Remove 2008 Remove Clustering Remove ML
article thumbnail

A review of purpose-built accelerators for financial services

AWS Machine Learning Blog

These activities cover disparate fields such as basic data processing, analytics, and machine learning (ML). ML is often associated with PBAs, so we start this post with an illustrative figure. The ML paradigm is learning followed by inference. The union of advances in hardware and ML has led us to the current day.

AWS 98
article thumbnail

Structural Evolutions in Data

O'Reilly Media

” Consider the structural evolutions of that theme: Stage 1: Hadoop and Big Data By 2008, many companies found themselves at the intersection of “a steep increase in online activity” and “a sharp decline in costs for storage and computing.” A basic, production-ready cluster priced out to the low-six-figures.

Hadoop 101
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Identifying defense coverage schemes in NFL’s Next Gen Stats

AWS Machine Learning Blog

Through a collaboration between the Next Gen Stats team and the Amazon ML Solutions Lab , we have developed the machine learning (ML)-powered stat of coverage classification that accurately identifies the defense coverage scheme based on the player tracking data. In this post, we deep dive into the technical details of this ML model.

ML 78
article thumbnail

Financial text generation using a domain-adapted fine-tuned large language model in Amazon SageMaker JumpStart

AWS Machine Learning Blog

JumpStart helps you quickly and easily get started with machine learning (ML) and provides a set of solutions for the most common use cases that can be trained and deployed readily with just a few steps. Defining hyperparameters involves setting the values for various parameters used during the training process of an ML model.

ML 77
article thumbnail

Domain-adaptation Fine-tuning of Foundation Models in Amazon SageMaker JumpStart on Financial data

AWS Machine Learning Blog

JumpStart helps you quickly and easily get started with machine learning (ML) and provides a set of solutions for the most common use cases that can be trained and deployed readily with just a few steps. Defining hyperparameters involves setting the values for various parameters used during the training process of an ML model.

ML 52
article thumbnail

[Latest] 20+ Top Machine Learning Projects for final year

Mlearning.ai

We have the IPL data from 2008 to 2017. How to find the most dominant colors in an image using KMeans clustering In this blog, we will find the most dominant colors in an image using the K-means clustering algorithm , this is a very interesting project and personally one of my favorites because of its simplicity and power.

article thumbnail

Zero-shot prompting for the Flan-T5 foundation model in Amazon SageMaker JumpStart

AWS Machine Learning Blog

JumpStart is the machine learning (ML) hub of Amazon SageMaker that offers a one-click access to over 350 built-in algorithms; pre-trained models from TensorFlow, PyTorch, Hugging Face, and MXNet; and pre-built solution templates. This page lists available end-to-end ML solutions, pre-trained models, and example notebooks.