Remove 2010 Remove Algorithm Remove Data Pipeline
article thumbnail

A review of purpose-built accelerators for financial services

AWS Machine Learning Blog

This is accomplished by breaking the problem into independent parts so that each processing element can complete its part of the workload algorithm simultaneously. Parallelism is suited for workloads that are repetitive, fixed tasks, involving little conditional branching and often large amounts of data.

AWS 97
article thumbnail

Boosting RAG-based intelligent document assistants using entity extraction, SQL querying, and agents with Amazon Bedrock

AWS Machine Learning Blog

Overview of RAG RAG solutions are inspired by representation learning and semantic search ideas that have been gradually adopted in ranking problems (for example, recommendation and search) and natural language processing (NLP) tasks since 2010. The search precision can also be improved with metadata filtering.

SQL 122
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How SnapLogic built a text-to-pipeline application with Amazon Bedrock to translate business intent into action

Flipboard

Iris was designed to use machine learning (ML) algorithms to predict the next steps in building a data pipeline. Since joining SnapLogic in 2010, Greg has helped design and implement several key platform features including cluster processing, big data processing, the cloud architecture, and machine learning.

Database 158
article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning Blog

Data retrieval and augmentation – When a query is initiated, the Vector Database Snap Pack retrieves relevant vectors from OpenSearch Service using similarity search algorithms to match the query with stored vectors. The retrieved vectors augment the initial query with context-specific enterprise data, enhancing its relevance.

AI 78