Remove 2010 Remove AWS Remove ML
article thumbnail

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

AWS Machine Learning Blog

Building generative AI applications presents significant challenges for organizations: they require specialized ML expertise, complex infrastructure management, and careful orchestration of multiple services. You can obtain the SageMaker Unified Studio URL for your domains by accessing the AWS Management Console for Amazon DataZone.

AWS 106
article thumbnail

Reinventing a cloud-native federated learning architecture on AWS

AWS Machine Learning Blog

Machine learning (ML), especially deep learning, requires a large amount of data for improving model performance. Customers often need to train a model with data from different regions, organizations, or AWS accounts. Federated learning (FL) is a distributed ML approach that trains ML models on distributed datasets.

AWS 118
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Architecture to AWS CloudFormation code using Anthropic’s Claude 3 on Amazon Bedrock

AWS Machine Learning Blog

Architecting specific AWS Cloud solutions involves creating diagrams that show relationships and interactions between different services. Instead of building the code manually, you can use Anthropic’s Claude 3’s image analysis capabilities to generate AWS CloudFormation templates by passing an architecture diagram as input.

AWS 123
article thumbnail

34 new or updated datasets available on the Registry of Open Data on AWS

Flipboard

The Amazon Web Services (AWS) Open Data Sponsorship Program makes high-value, cloud-optimized datasets publicly available on AWS. The full list of publicly available datasets are on the Registry of Open Data on AWS and also discoverable on the AWS Data Exchange. This quarter, AWS released 34 new or updated datasets.

AWS 99
article thumbnail

Unlock ML insights using the Amazon SageMaker Feature Store Feature Processor

AWS Machine Learning Blog

Amazon SageMaker Feature Store provides an end-to-end solution to automate feature engineering for machine learning (ML). For many ML use cases, raw data like log files, sensor readings, or transaction records need to be transformed into meaningful features that are optimized for model training. SageMaker Studio set up.

ML 122
article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning Blog

SnapLogic uses Amazon Bedrock to build its platform, capitalizing on the proximity to data already stored in Amazon Web Services (AWS). At its core, Amazon Bedrock provides the foundational infrastructure for robust performance, security, and scalability for deploying machine learning (ML) models.

AI 84
article thumbnail

Improving air quality with generative AI

AWS Machine Learning Blog

On December 6 th -8 th 2023, the non-profit organization, Tech to the Rescue , in collaboration with AWS, organized the world’s largest Air Quality Hackathon – aimed at tackling one of the world’s most pressing health and environmental challenges, air pollution. As always, AWS welcomes your feedback.

AWS 129