Remove 2011 Remove AWS Remove ML
article thumbnail

Announcing new Jupyter contributions by AWS to democratize generative AI and scale ML workloads

AWS Machine Learning Blog

Project Jupyter is a multi-stakeholder, open-source project that builds applications, open standards, and tools for data science, machine learning (ML), and computational science. Given the importance of Jupyter to data scientists and ML developers, AWS is an active sponsor and contributor to Project Jupyter.

ML 102
article thumbnail

Reinventing a cloud-native federated learning architecture on AWS

AWS Machine Learning Blog

Machine learning (ML), especially deep learning, requires a large amount of data for improving model performance. Customers often need to train a model with data from different regions, organizations, or AWS accounts. Federated learning (FL) is a distributed ML approach that trains ML models on distributed datasets.

AWS 116
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Improving air quality with generative AI

AWS Machine Learning Blog

On December 6 th -8 th 2023, the non-profit organization, Tech to the Rescue , in collaboration with AWS, organized the world’s largest Air Quality Hackathon – aimed at tackling one of the world’s most pressing health and environmental challenges, air pollution. As always, AWS welcomes your feedback.

AWS 125
article thumbnail

Amazon EC2 P5e instances are generally available

AWS Machine Learning Blog

AWS is the first leading cloud provider to offer the H200 GPU in production. Additionally, network latency can become an issue for ML workloads on distributed systems, because data needs to be transferred between multiple machines. 48xlarge sizes through Amazon EC2 Capacity Blocks for ML.

AWS 108
article thumbnail

Use streaming ingestion with Amazon SageMaker Feature Store and Amazon MSK to make ML-backed decisions in near-real time

AWS Machine Learning Blog

Businesses are increasingly using machine learning (ML) to make near-real-time decisions, such as placing an ad, assigning a driver, recommending a product, or even dynamically pricing products and services. As a result, some enterprises have spent millions of dollars inventing their own proprietary infrastructure for feature management.

ML 93
article thumbnail

Video auto-dubbing using Amazon Translate, Amazon Bedrock, and Amazon Polly

AWS Machine Learning Blog

Faced with manual dubbing challenges and prohibitive costs, MagellanTV sought out AWS Premier Tier Partner Mission Cloud for an innovative solution. In the backend, AWS Step Functions orchestrates the preceding steps as a pipeline. Each step is run on AWS Lambda or AWS Batch. She received her Ph.D. After earning his Ph.D.

AWS 120
article thumbnail

Streamlining ETL data processing at Talent.com with Amazon SageMaker

AWS Machine Learning Blog

Established in 2011, Talent.com aggregates paid job listings from their clients and public job listings, and has created a unified, easily searchable platform. The solution does not require porting the feature extraction code to use PySpark, as required when using AWS Glue as the ETL solution.

ETL 106