Remove 2012 Remove AWS Remove Cloud Data
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. It provides a single web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models.

ML 123
article thumbnail

Configure cross-account access of Amazon Redshift clusters in Amazon SageMaker Studio using VPC peering

AWS Machine Learning Blog

Amazon Redshift is a fully managed, fast, secure, and scalable cloud data warehouse. Organizations often want to use SageMaker Studio to get predictions from data stored in a data warehouse such as Amazon Redshift. All SageMaker Studio traffic is through the specified VPC and subnets. Select VPC Only , then choose Next.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Use the Amazon SageMaker and Salesforce Data Cloud integration to power your Salesforce apps with AI/ML

AWS Machine Learning Blog

The following steps give an overview of how to use the new capabilities launched in SageMaker for Salesforce to enable the overall integration: Set up the Amazon SageMaker Studio domain and OAuth between Salesforce and the AWS account s. The endpoint will be exposed to Salesforce Data Cloud as an API through API Gateway.

ML 96
article thumbnail

Process Mining – Ist Celonis wirklich so gut? Ein Praxisbericht.

Data Science Blog

Process Mining Tools, die als pure Process Mining Software gestartet sind Hierzu gehört Celonis, das drei-köpfige und sehr geschäftstüchtige Gründer-Team, das ich im Jahr 2012 persönlich kennenlernen durfte. in Databricks oder den KI-Tools von Google, AWS und Mircosoft Azure (Azure Cognitive Services, Azure Machine Learning etc.).

article thumbnail

Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas

AWS Machine Learning Blog

The workflow includes the following steps: Within the SageMaker Canvas interface, the user composes a SQL query to run against the GCP BigQuery data warehouse. Athena uses the Athena Google BigQuery connector , which uses a pre-built AWS Lambda function to enable Athena federated query capabilities.