Remove 2012 Remove Cloud Data Remove SQL
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. You can use query_string to filter your dataset by SQL and unload it to Amazon S3. If you’re familiar with SageMaker and writing Spark code, option B could be your choice.

ML 123
article thumbnail

Process Mining – Ist Celonis wirklich so gut? Ein Praxisbericht.

Data Science Blog

Process Mining Tools, die als pure Process Mining Software gestartet sind Hierzu gehört Celonis, das drei-köpfige und sehr geschäftstüchtige Gründer-Team, das ich im Jahr 2012 persönlich kennenlernen durfte. Im Grunde kann man aber folgende große Herkunftskategorien ausmachen: 1. Aber Celonis war nicht das erste Process Mining Unternehmen.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Configure cross-account access of Amazon Redshift clusters in Amazon SageMaker Studio using VPC peering

AWS Machine Learning Blog

Amazon Redshift is a fully managed, fast, secure, and scalable cloud data warehouse. Organizations often want to use SageMaker Studio to get predictions from data stored in a data warehouse such as Amazon Redshift. This should return the records successfully for further data processing and analysis.

article thumbnail

Why Migrate From Teradata to Snowflake

phData

Snowflake was founded in 2012 and is rapidly changing how people think about data warehousing solutions. Snowflake users have access to copious benefits over users of traditional data warehousing solutions, like no limit on the varying data types stored. What is Snowflake?

SQL 52
article thumbnail

Use the Amazon SageMaker and Salesforce Data Cloud integration to power your Salesforce apps with AI/ML

AWS Machine Learning Blog

Choose Run SQL query and take note of the API Gateway URL and schema because you will need this information when registering with Einstein Studio. On the IAM console, navigate to the SageMaker domain execution role. Choose Add permissions and select Create an inline policy. Copy and paste the link into a new browser tab URL.

ML 96
article thumbnail

Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas

AWS Machine Learning Blog

The workflow includes the following steps: Within the SageMaker Canvas interface, the user composes a SQL query to run against the GCP BigQuery data warehouse. Athena returns the queried data from BigQuery to SageMaker Canvas, where you can use it for ML model training and development purposes within the no-code interface.