Remove 2012 Remove Clustering Remove ML
article thumbnail

Scale ML workflows with Amazon SageMaker Studio and Amazon SageMaker HyperPod

AWS Machine Learning Blog

Scaling machine learning (ML) workflows from initial prototypes to large-scale production deployment can be daunting task, but the integration of Amazon SageMaker Studio and Amazon SageMaker HyperPod offers a streamlined solution to this challenge. Create a JupyterLab space and mount an Amazon FSx for Lustre file system to your space.

ML 104
article thumbnail

Integrate HyperPod clusters with Active Directory for seamless multi-user login

AWS Machine Learning Blog

Amazon SageMaker HyperPod is purpose-built to accelerate foundation model (FM) training, removing the undifferentiated heavy lifting involved in managing and optimizing a large training compute cluster. In this solution, HyperPod cluster instances use the LDAPS protocol to connect to the AWS Managed Microsoft AD via an NLB.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker , a fully managed ML service, with requirements to develop features offline in a code way or low-code/no-code way, store featured data from Amazon Redshift, and make this happen at scale in a production environment.

ML 123
article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning Blog

This allows SageMaker Studio users to perform petabyte-scale interactive data preparation, exploration, and machine learning (ML) directly within their familiar Studio notebooks, without the need to manage the underlying compute infrastructure. This same interface is also used for provisioning EMR clusters.

AWS 125
article thumbnail

Configure cross-account access of Amazon Redshift clusters in Amazon SageMaker Studio using VPC peering

AWS Machine Learning Blog

With cloud computing, as compute power and data became more available, machine learning (ML) is now making an impact across every industry and is a core part of every business and industry. Amazon SageMaker Studio is the first fully integrated ML development environment (IDE) with a web-based visual interface.

article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning Blog

Tens of thousands of AWS customers use AWS machine learning (ML) services to accelerate their ML development with fully managed infrastructure and tools. Cluster resources are provisioned for the duration of your job, and cleaned up when a job is complete. You can easily extend this solution to add more functionality.

article thumbnail

Machine learning with decentralized training data using federated learning on Amazon SageMaker

AWS Machine Learning Blog

Machine learning (ML) is revolutionizing solutions across industries and driving new forms of insights and intelligence from data. Many ML algorithms train over large datasets, generalizing patterns it finds in the data and inferring results from those patterns as new unseen records are processed. What is federated learning?