Remove 2012 Remove ML Remove Natural Language Processing
article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning Blog

With the introduction of EMR Serverless support for Apache Livy endpoints , SageMaker Studio users can now seamlessly integrate their Jupyter notebooks running sparkmagic kernels with the powerful data processing capabilities of EMR Serverless. This same interface is also used for provisioning EMR clusters. elasticmapreduce", "arn:aws:s3:::*.elasticmapreduce/*"

AWS 125
article thumbnail

Build high-performance ML models using PyTorch 2.0 on AWS – Part 1

AWS Machine Learning Blog

PyTorch is a machine learning (ML) framework that is widely used by AWS customers for a variety of applications, such as computer vision, natural language processing, content creation, and more. With the recent PyTorch 2.0 release, AWS customers can now do same things as they could with PyTorch 1.x Refer to PyTorch 2.0:

AWS 91
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From Rulesets to Transformers: A Journey Through the Evolution of SOTA in NLP

Mlearning.ai

Charting the evolution of SOTA (State-of-the-art) techniques in NLP (Natural Language Processing) over the years, highlighting the key algorithms, influential figures, and groundbreaking papers that have shaped the field. Evolution of NLP Models To understand the full impact of the above evolutionary process.

article thumbnail

Build a multilingual automatic translation pipeline with Amazon Translate Active Custom Translation

AWS Machine Learning Blog

With a background in AI/ML, data science, and analytics, Yunfei helps customers adopt AWS services to deliver business results. He designs AI/ML and data analytics solutions that overcome complex technical challenges and drive strategic objectives. About the authors Yunfei Bai is a Senior Solutions Architect at AWS.

AWS 105
article thumbnail

Boost productivity on Amazon SageMaker Studio: Introducing JupyterLab Spaces and generative AI tools

AWS Machine Learning Blog

Amazon SageMaker Studio offers a broad set of fully managed integrated development environments (IDEs) for machine learning (ML) development, including JupyterLab, Code Editor based on Code-OSS (Visual Studio Code Open Source), and RStudio. It’s attached to a ML compute instance whenever a Space is run.

ML 132
article thumbnail

Automatic image cropping with Amazon Rekognition

AWS Machine Learning Blog

Amazon Rekognition makes it easy to add this capability to your applications without any machine learning (ML) expertise and comes with various APIs to fulfil use cases such as object detection, content moderation, face detection and analysis, and text and celebrity recognition, which we use in this example.

ML 102
article thumbnail

AI-powered code suggestions and security scans in Amazon SageMaker notebooks using Amazon CodeWhisperer and Amazon CodeGuru

AWS Machine Learning Blog

Amazon SageMaker comes with two options to spin up fully managed notebooks for exploring data and building machine learning (ML) models. In addition to creating notebooks, you can perform all the ML development steps to build, train, debug, track, deploy, and monitor your models in a single pane of glass in Studio.

AWS 103