Remove 2014 Remove ML Remove Natural Language Processing
article thumbnail

Getting Started with AI

Towards AI

As a reminder, I highly recommend that you refer to more than one resource (other than documentation) when learning ML, preferably a textbook geared toward your learning level (beginner/intermediate / advanced). In ML, there are a variety of algorithms that can help solve problems. 12, 2014. [3] 16, 2020. [4]

article thumbnail

Personalize your generative AI applications with Amazon SageMaker Feature Store

AWS Machine Learning Blog

Large language models (LLMs) are revolutionizing fields like search engines, natural language processing (NLP), healthcare, robotics, and code generation. One such component is a feature store, a tool that stores, shares, and manages features for machine learning (ML) models.

AI 141
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From Rulesets to Transformers: A Journey Through the Evolution of SOTA in NLP

Mlearning.ai

Charting the evolution of SOTA (State-of-the-art) techniques in NLP (Natural Language Processing) over the years, highlighting the key algorithms, influential figures, and groundbreaking papers that have shaped the field. Evolution of NLP Models To understand the full impact of the above evolutionary process.

article thumbnail

Top 6 Kubernetes use cases

IBM Journey to AI blog

Developed internally at Google and released to the public in 2014, Kubernetes has enabled organizations to move away from traditional IT infrastructure and toward the automation of operational tasks tied to the deployment, scaling and managing of containerized applications (or microservices ).

article thumbnail

Accelerating large-scale neural network training on CPUs with ThirdAI and AWS Graviton

AWS Machine Learning Blog

We also note that our models primarily work well for search, recommendation, and natural language processing tasks that typically feature large, high-dimensional output spaces and a requirement of extremely low inference latency. Instance vCPU RAM (GB) Processor On-Demand Price (us-east-1) c7g.8xlarge

AWS 135
article thumbnail

Explain text classification model predictions using Amazon SageMaker Clarify

AWS Machine Learning Blog

Model explainability refers to the process of relating the prediction of a machine learning (ML) model to the input feature values of an instance in humanly understandable terms. Amazon SageMaker Clarify is a feature of Amazon SageMaker that enables data scientists and ML engineers to explain the predictions of their ML models.

article thumbnail

AI Drug Discovery: How It’s Changing the Game

Becoming Human

Overhyped or not, investments in AI drug discovery jumped from $450 million in 2014 to a whopping $58 billion in 2021. All pharma giants, including Bayer, AstraZeneca, Takeda, Sanofi, Merck, and Pfizer, have stepped up spending in the hope to create new-age AI solutions that will bring cost efficiency, speed, and precision to the process.

AI 139