Remove 2015 Remove AWS Remove Clustering
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. Third, we’ll explore the robust infrastructure services from AWS powering AI innovation, featuring Amazon SageMaker , AWS Trainium , and AWS Inferentia under AI/ML, as well as Compute topics.

AWS 86
article thumbnail

Fast and cost-effective LLaMA 2 fine-tuning with AWS Trainium

AWS Machine Learning Blog

In this post, we walk through how to fine-tune Llama 2 on AWS Trainium , a purpose-built accelerator for LLM training, to reduce training times and costs. We review the fine-tuning scripts provided by the AWS Neuron SDK (using NeMo Megatron-LM), the various configurations we used, and the throughput results we saw.

AWS 116
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning Blog

SnapLogic uses Amazon Bedrock to build its platform, capitalizing on the proximity to data already stored in Amazon Web Services (AWS). To address customers’ requirements about data privacy and sovereignty, SnapLogic deploys the data plane within the customer’s VPC on AWS.

AI 74
article thumbnail

Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 2

AWS Machine Learning Blog

To mitigate these challenges, we propose a federated learning (FL) framework, based on open-source FedML on AWS, which enables analyzing sensitive HCLS data. In this two-part series, we demonstrate how you can deploy a cloud-based FL framework on AWS. In the first post , we described FL concepts and the FedML framework.

AWS 81
article thumbnail

The history of Kubernetes

IBM Journey to AI blog

These tech pioneers were looking for ways to bring Google’s internal infrastructure expertise into the realm of large-scale cloud computing and also enable Google to compete with Amazon Web Services (AWS)—the unrivaled leader among cloud providers at the time. Control plane nodes , which control the cluster.

article thumbnail

How Meesho built a generalized feed ranker using Amazon SageMaker inference

AWS Machine Learning Blog

Meesho was founded in 2015 and today focuses on buyers and sellers across India. We used AWS machine learning (ML) services like Amazon SageMaker to develop a powerful generalized feed ranker (GFR). In the following sections, we discuss each component and the AWS services used in more detail.

AWS 112
article thumbnail

How SnapLogic built a text-to-pipeline application with Amazon Bedrock to translate business intent into action

Flipboard

In this post, we show you how SnapLogic , an AWS customer, used Amazon Bedrock to power their SnapGPT product through automated creation of these complex DSL artifacts from human language. SnapLogic background SnapLogic is an AWS customer on a mission to bring enterprise automation to the world.

Database 159