Remove 2016 Remove Clustering Remove Deep Learning
article thumbnail

Identification of Hazardous Areas for Priority Landmine Clearance: AI for Humanitarian Mine Action

ML @ CMU

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool for landmine contamination to identify hazardous clusters under geographic and budget constraints, experimentally reducing false alarms and clearance time by half. The major components of RELand are illustrated in Fig.

article thumbnail

How to tackle lack of data: an overview on transfer learning

Data Science Blog

1, Data is the new oil, but labeled data might be closer to it Even though we have been in the 3rd AI boom and machine learning is showing concrete effectiveness at a commercial level, after the first two AI booms we are facing a problem: lack of labeled data or data themselves.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The effectiveness of clustering in IIoT

Mlearning.ai

How this machine learning model has become a sustainable and reliable solution for edge devices in an industrial network An Introduction Clustering (cluster analysis - CA) and classification are two important tasks that occur in our daily lives. Industrial Internet of Things (IIoT) The Constraints Within the area of Industry 4.0,

article thumbnail

Effectively solve distributed training convergence issues with Amazon SageMaker Hyperband Automatic Model Tuning

AWS Machine Learning Blog

Recent years have shown amazing growth in deep learning neural networks (DNNs). Amazon SageMaker distributed training jobs enable you with one click (or one API call) to set up a distributed compute cluster, train a model, save the result to Amazon Simple Storage Service (Amazon S3), and shut down the cluster when complete.

article thumbnail

A review of purpose-built accelerators for financial services

AWS Machine Learning Blog

Learning means identifying and capturing historical patterns from the data, and inference means mapping a current value to the historical pattern. The following figure illustrates the idea of a large cluster of GPUs being used for learning, followed by a smaller number for inference.

AWS 113
article thumbnail

Comparative Analysis: PyTorch vs TensorFlow vs Keras

Pickl AI

Introduction Deep Learning frameworks are crucial in developing sophisticated AI models, and driving industry innovations. By understanding their unique features and capabilities, you’ll make informed decisions for your Deep Learning applications.

article thumbnail

Robustness of a Markov Blanket Discovery Approach to Adversarial Attack in Image Segmentation: An…

Mlearning.ai

Automated algorithms for image segmentation have been developed based on various techniques, including clustering, thresholding, and machine learning (Arbeláez et al., 2019) proposed a novel adversarial training framework for improving the robustness of deep learning-based segmentation models. 2018; Sitawarin et al.,