Remove 2018 Remove Natural Language Processing Remove Supervised Learning
article thumbnail

Generative vs Discriminative AI: Understanding the 5 Key Differences

Data Science Dojo

A visual representation of discriminative AI – Source: Analytics Vidhya Discriminative modeling, often linked with supervised learning, works on categorizing existing data. Generative AI often operates in unsupervised or semi-supervised learning settings, generating new data points based on patterns learned from existing data.

article thumbnail

Modern NLP: A Detailed Overview. Part 2: GPTs

Towards AI

In the first part of the series, we talked about how Transformer ended the sequence-to-sequence modeling era of Natural Language Processing and understanding. Semi-Supervised Sequence Learning As we all know, supervised learning has a drawback, as it requires a huge labeled dataset to train.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Fine-Tune Language Models: First Principles to Scalable Performance

Towards AI

Well do so in three levels: first, by manually adding a classification head in PyTorch* and training the model so you can see the full process; second, by using the Hugging Face* Transformers library to streamline the process; and third, by leveraging PyTorch Lightning* and accelerators to optimize training performance.

article thumbnail

Against LLM maximalism

Explosion

A lot of people are building truly new things with Large Language Models (LLMs), like wild interactive fiction experiences that weren’t possible before. But if you’re working on the same sort of Natural Language Processing (NLP) problems that businesses have been trying to solve for a long time, what’s the best way to use them?

article thumbnail

Meet the Winners of the Youth Mental Health Narratives Challenge

DrivenData Labs

His research focuses on applying natural language processing techniques to extract information from unstructured clinical and medical texts, especially in low-resource settings. I love participating in various competitions involving deep learning, especially tasks involving natural language processing or LLMs.

article thumbnail

Foundation models: a guide

Snorkel AI

Foundation models are large AI models trained on enormous quantities of unlabeled data—usually through self-supervised learning. This process results in generalized models capable of a wide variety of tasks, such as image classification, natural language processing, and question-answering, with remarkable accuracy.

article thumbnail

How foundation models and data stores unlock the business potential of generative AI

IBM Journey to AI blog

Foundation models can be trained to perform tasks such as data classification, the identification of objects within images (computer vision) and natural language processing (NLP) (understanding and generating text) with a high degree of accuracy. An open-source model, Google created BERT in 2018.

AI 70