Remove 2019 Remove AWS Remove Natural Language Processing
article thumbnail

Develop and train large models cost-efficiently with Metaflow and AWS Trainium

AWS Machine Learning Blog

Historically, natural language processing (NLP) would be a primary research and development expense. In 2024, however, organizations are using large language models (LLMs), which require relatively little focus on NLP, shifting research and development from modeling to the infrastructure needed to support LLM workflows.

AWS 117
article thumbnail

Fast and cost-effective LLaMA 2 fine-tuning with AWS Trainium

AWS Machine Learning Blog

In this post, we walk through how to fine-tune Llama 2 on AWS Trainium , a purpose-built accelerator for LLM training, to reduce training times and costs. We review the fine-tuning scripts provided by the AWS Neuron SDK (using NeMo Megatron-LM), the various configurations we used, and the throughput results we saw.

AWS 116
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AWS Inferentia2 builds on AWS Inferentia1 by delivering 4x higher throughput and 10x lower latency

AWS Machine Learning Blog

The size of the machine learning (ML) models––large language models ( LLMs ) and foundation models ( FMs )–– is growing fast year-over-year , and these models need faster and more powerful accelerators, especially for generative AI. With AWS Inferentia1, customers saw up to 2.3x With AWS Inferentia1, customers saw up to 2.3x

AWS 82
article thumbnail

Anthropic Claude 3.5 Sonnet ranks number 1 for business and finance in S&P AI Benchmarks by Kensho

AWS Machine Learning Blog

In the following example, for an LLM to answer the question correctly, it needs to understand the table row represents location and the column represents year, and then extract the correct quantity (total amount) from the table based on the asked location and year: Question : What was the Total Americas amount in 2019?

AWS 120
article thumbnail

Build a contextual chatbot application using Knowledge Bases for Amazon Bedrock

AWS Machine Learning Blog

Note that you can also use Knowledge Bases for Amazon Bedrock service APIs and the AWS Command Line Interface (AWS CLI) to programmatically create a knowledge base. Create a Lambda function This Lambda function is deployed using an AWS CloudFormation template available in the GitHub repo under the /cfn folder.

AWS 112
article thumbnail

Amazon SageMaker unveils the Cohere Command R fine-tuning model

AWS Machine Learning Blog

AWS announced the availability of the Cohere Command R fine-tuning model on Amazon SageMaker. This latest addition to the SageMaker suite of machine learning (ML) capabilities empowers enterprises to harness the power of large language models (LLMs) and unlock their full potential for a wide range of applications.

AWS 118
article thumbnail

Talk to your slide deck using multimodal foundation models hosted on Amazon Bedrock and Amazon SageMaker – Part 2

AWS Machine Learning Blog

We stored the embeddings in a vector database and then used the Large Language-and-Vision Assistant (LLaVA 1.5-7b) We used AWS services including Amazon Bedrock , Amazon SageMaker , and Amazon OpenSearch Serverless in this solution. aws s3 cp {s3_img_path}. In this post, we demonstrate a different approach. I need numbers."

AWS 119