This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In this post, we describe the end-to-end workforce management system that begins with location-specific demand forecast, followed by courier workforce planning and shift assignment using Amazon Forecast and AWS Step Functions. AWS Step Functions automatically initiate and monitor these workflows by simplifying error handling.
In an effort to create and maintain a socially responsible gaming environment, AWS Professional Services was asked to build a mechanism that detects inappropriate language (toxic speech) within online gaming player interactions. The solution lay in what’s known as transfer learning.
In this post, we detail our collaboration in creating two proof of concept (PoC) exercises around multi-modal machine learning for survival analysis and cancer sub-typing, using genomic (gene expression, mutation and copy number variant data) and imaging (histopathology slides) data. 2022 ) was implemented (Section 2.1).
According to a 2019 survey by Deloitte , only 18% of businesses reported being able to take advantage of unstructured data. As AI adoption continues to accelerate, developing efficient mechanisms for digesting and learning from unstructured data becomes even more critical in the future.
Data scientists and researchers train LLMs on enormous amounts of unstructured data through self-supervisedlearning. The model then predicts the missing words (see “what is self-supervisedlearning?” OpenAI’s GPT-2, finalized in 2019 at 1.5 billion parameters, raised eyebrows by producing convincing prose.
Data scientists and researchers train LLMs on enormous amounts of unstructured data through self-supervisedlearning. The model then predicts the missing words (see “what is self-supervisedlearning?” OpenAI’s GPT-2, finalized in 2019 at 1.5 billion parameters, raised eyebrows by producing convincing prose.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content