Remove 2019 Remove Big Data Remove Clean Data
article thumbnail

Predict football punt and kickoff return yards with fat-tailed distribution using GluonTS

Flipboard

The player data was used to derive features for model development: X – Player position along the long axis of the field Y – Player position along the short axis of the field S – Speed in yards/second; replaced by Dis*10 to make it more accurate (Dis is the distance in the past 0.1

article thumbnail

Present and future of data cubes: an European EO perspective

Mlearning.ai

It can be gradually “enriched” so the typical hierarchy of data is thus: Raw dataCleaned data ↓ Analysis-ready data ↓ Decision-ready data ↓ Decisions. For example, vector maps of roads of an area coming from different sources is the raw data. Data, 4(3), 94. 8659–8662). Wright, D.

AWS 98
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Simplify data prep for generative AI with Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

While this data holds valuable insights, its unstructured nature makes it difficult for AI algorithms to interpret and learn from it. According to a 2019 survey by Deloitte , only 18% of businesses reported being able to take advantage of unstructured data. Clean data is important for good model performance.

article thumbnail

Identifying defense coverage schemes in NFL’s Next Gen Stats

AWS Machine Learning Blog

Feature engineering Game tracking data is captured at 10 frames per second, including the player location, speed, acceleration, and orientation. and Big Data Bowl Kaggle Zoo solution ( Gordeev et al. ). Advances in neural information processing systems 32 (2019). Visualizing data using t-SNE.”

ML 78