Remove 2019 Remove ML Remove Supervised Learning
article thumbnail

Xavier Amatriain’s Machine Learning and Artificial Intelligence 2019 Year-end Roundup

KDnuggets

It is an annual tradition for Xavier Amatriain to write a year-end retrospective of advances in AI/ML, and this year is no different. Gain an understanding of the important developments of the past year, as well as insights into what expect in 2020.

article thumbnail

An ML-based approach to better characterize lung diseases

Google Research AI blog

That is where we can use the ability of ML models to pick up on subtle intricate patterns in large amounts of data. We’ve previously demonstrated the ability to use ML models to quickly phenotype at scale for retinal diseases. We trained ML models to predict whether an individual has COPD using the full spirograms as inputs.

ML 99
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Genomics England uses Amazon SageMaker to predict cancer subtypes and patient survival from multi-modal data

AWS Machine Learning Blog

As part of its goal to help people live longer, healthier lives, Genomics England is interested in facilitating more accurate identification of cancer subtypes and severity, using machine learning (ML). 2022 ) is a multi-modal ML framework that consists of three sub-network components (see Figure 1 at Chen et al.,

article thumbnail

Getir end-to-end workforce management: Amazon Forecast and AWS Step Functions

AWS Machine Learning Blog

Amazon Forecast is a fully managed service that uses machine learning (ML) algorithms to deliver highly accurate time series forecasts. Initially, daily forecasts for each country are formulated through ML models. His focus was building machine learning algorithms to simulate nervous network anomalies.

AWS 128
article thumbnail

AWS performs fine-tuning on a Large Language Model (LLM) to classify toxic speech for a large gaming company

AWS Machine Learning Blog

AWS ProServe solved this use case through a joint effort between the Generative AI Innovation Center (GAIIC) and the ProServe ML Delivery Team (MLDT). However, LLMs are not a new technology in the ML space. The new ML workflow now starts with a pre-trained model dubbed a foundation model.

AWS 94
article thumbnail

Simplify data prep for generative AI with Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

According to a 2019 survey by Deloitte , only 18% of businesses reported being able to take advantage of unstructured data. As AI adoption continues to accelerate, developing efficient mechanisms for digesting and learning from unstructured data becomes even more critical in the future.

article thumbnail

Foundation models: a guide

Snorkel AI

Foundation models are large AI models trained on enormous quantities of unlabeled data—usually through self-supervised learning. What is self-supervised learning? Self-supervised learning is a kind of machine learning that creates labels directly from the input data. Find out in the guide below.