Remove 2020 Remove AWS Remove ML
article thumbnail

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

AWS Machine Learning Blog

In 2018, I sat in the audience at AWS re:Invent as Andy Jassy announced AWS DeepRacer —a fully autonomous 1/18th scale race car driven by reinforcement learning. At the time, I knew little about AI or machine learning (ML). seconds, securing the 2018 AWS DeepRacer grand champion title!

AWS 107
article thumbnail

Unlocking insights and enhancing customer service: Intact’s transformative AI journey with AWS

AWS Machine Learning Blog

The company developed an automated solution called Call Quality (CQ) using AI services from Amazon Web Services (AWS). In this post, we demonstrate how the CQ solution used Amazon Transcribe and other AWS services to improve critical KPIs with AI-powered contact center call auditing and analytics.

AWS 87
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 133
article thumbnail

Easily deploy and manage hundreds of LoRA adapters with SageMaker efficient multi-adapter inference

AWS Machine Learning Blog

For example, marketing and software as a service (SaaS) companies can personalize artificial intelligence and machine learning (AI/ML) applications using each of their customer’s images, art style, communication style, and documents to create campaigns and artifacts that represent them. For details, refer to Create an AWS account.

AWS 103
article thumbnail

Llama 4 family of models from Meta are now available in SageMaker JumpStart

AWS Machine Learning Blog

Virginia) AWS Region. Prerequisites To try the Llama 4 models in SageMaker JumpStart, you need the following prerequisites: An AWS account that will contain all your AWS resources. An AWS Identity and Access Management (IAM) role to access SageMaker AI. The example extracts and contextualizes the buildspec-1-10-2.yml

AWS 116
article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. Amazon SageMaker provides capabilities to remove the undifferentiated heavy lifting of building and deploying ML models. This entire workflow is shown in the following solution diagram.

AWS 108
article thumbnail

Reinventing a cloud-native federated learning architecture on AWS

AWS Machine Learning Blog

Machine learning (ML), especially deep learning, requires a large amount of data for improving model performance. Customers often need to train a model with data from different regions, organizations, or AWS accounts. Federated learning (FL) is a distributed ML approach that trains ML models on distributed datasets.

AWS 121