Remove 2022 Remove AWS Remove Clustering
article thumbnail

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

AWS Machine Learning Blog

In 2018, I sat in the audience at AWS re:Invent as Andy Jassy announced AWS DeepRacer —a fully autonomous 1/18th scale race car driven by reinforcement learning. But AWS DeepRacer instantly captured my interest with its promise that even inexperienced developers could get involved in AI and ML.

AWS 107
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Prerequisites Before you begin, make sure you have the following prerequisites in place: An AWS account and role with the AWS Identity and Access Management (IAM) privileges to deploy the following resources: IAM roles. For this post we’ll use a provisioned Amazon Redshift cluster. A SageMaker domain. Database name : Enter dev.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Integrate HyperPod clusters with Active Directory for seamless multi-user login

AWS Machine Learning Blog

Amazon SageMaker HyperPod is purpose-built to accelerate foundation model (FM) training, removing the undifferentiated heavy lifting involved in managing and optimizing a large training compute cluster. In this solution, HyperPod cluster instances use the LDAPS protocol to connect to the AWS Managed Microsoft AD via an NLB.

article thumbnail

Real value, real time: Production AI with Amazon SageMaker and Tecton

AWS Machine Learning Blog

The US nationwide fraud losses topped $10 billion in 2023, a 14% increase from 2022. Orchestrate with Tecton-managed EMR clusters – After features are deployed, Tecton automatically creates the scheduling, provisioning, and orchestration needed for pipelines that can run on Amazon EMR compute engines.

ML 96
article thumbnail

Reduce energy consumption of your machine learning workloads by up to 90% with AWS purpose-built accelerators

Flipboard

For reference, GPT-3, an earlier generation LLM has 175 billion parameters and requires months of non-stop training on a cluster of thousands of accelerated processors. The Carbontracker study estimates that training GPT-3 from scratch may emit up to 85 metric tons of CO2 equivalent, using clusters of specialized hardware accelerators.

AWS 123
article thumbnail

Scaling distributed training with AWS Trainium and Amazon EKS

AWS Machine Learning Blog

In late 2022, AWS announced the general availability of Amazon EC2 Trn1 instances powered by AWS Trainium —a purpose-built machine learning (ML) accelerator optimized to provide a high-performance, cost-effective, and massively scalable platform for training deep learning models in the cloud. 32xlarge instances.

AWS 98
article thumbnail

Scale your machine learning workloads on Amazon ECS powered by AWS Trainium instances

AWS Machine Learning Blog

With containers, scaling on a cluster becomes much easier. In late 2022, AWS announced the general availability of Amazon EC2 Trn1 instances powered by AWS Trainium accelerators, which are purpose built for high-performance deep learning training. Therefore, we have two different options.

AWS 102