Remove 2022 Remove ML Remove Supervised Learning
article thumbnail

Retell a Paper: “Self-supervised Learning in Remote Sensing: A Review”

Mlearning.ai

NOTES, DEEP LEARNING, REMOTE SENSING, ADVANCED METHODS, SELF-SUPERVISED LEARNING A note of the paper I have read Photo by Kelly Sikkema on Unsplash Hi everyone, In today’s story, I would share notes I took from 32 pages of Wang et al., 2022’s paper. 2022 Deep learning notoriously needs a lot of data in training.

article thumbnail

Pioneering computer vision: Aleksandr Timashov, ML developer

Dataconomy

Aleksandr Timashov is an ML Engineer with over a decade of experience in AI and Machine Learning. On these projects, I mentored numerous ML engineers, fostering a culture of innovation within Petronas. You told us you were implementing these projects in 2020-2022, so it all started amid the Covid-19 times.

ML 91
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Robust and efficient medical imaging with self-supervision

Google Research AI blog

This problem of data-efficient generalization (a model’s ability to generalize to new settings using minimal new data) continues to be a key translational challenge for medical machine learning (ML) models and has in turn, prevented their broad uptake in real world healthcare settings.

article thumbnail

Google Research, 2022 & beyond: Algorithmic advances

Google Research AI blog

Robust algorithm design is the backbone of systems across Google, particularly for our ML and AI models. Google Research has been at the forefront of this effort, developing many innovations from privacy-safe recommendation systems to scalable solutions for large-scale ML. You can find other posts in the series here.)

Algorithm 110
article thumbnail

Five machine learning types to know

IBM Journey to AI blog

Machine learning (ML) technologies can drive decision-making in virtually all industries, from healthcare to human resources to finance and in myriad use cases, like computer vision , large language models (LLMs), speech recognition, self-driving cars and more. However, the growing influence of ML isn’t without complications.

article thumbnail

AI Trends for 2023: Sparking Creativity and Bringing Search to the Next Level

Dataversity

2022 was a big year for AI, and we’ve seen significant advancements in various areas – including natural language processing (NLP), machine learning (ML), and deep learning. Unsupervised and self-supervised learning are making ML more accessible by lowering the training data requirements.

article thumbnail

Genomics England uses Amazon SageMaker to predict cancer subtypes and patient survival from multi-modal data

AWS Machine Learning Blog

As part of its goal to help people live longer, healthier lives, Genomics England is interested in facilitating more accurate identification of cancer subtypes and severity, using machine learning (ML). 2022 ) was implemented (Section 2.1). by AWS, which aimed to mitigate the limitations of PORPOISE. Although Chen et al.,