Remove AI Remove Data Lakes Remove SQL
article thumbnail

KDnuggets News, January 18: 7 Best Platforms to Practice SQL • Explainable AI: 10 Python Libraries for Demystifying Your Model’s Decisions

KDnuggets

7 Best Platforms to Practice SQL • Explainable AI: 10 Python Libraries for Demystifying Your Model's Decisions • ChatGPT: Everything You Need to Know • Data Lakes and SQL: A Match Made in Data Heaven • Google Data Analytics Certification Review for 2023

SQL 217
article thumbnail

How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock

AWS Machine Learning Blog

As one of the largest AWS customers, Twilio engages with data, artificial intelligence (AI), and machine learning (ML) services to run their daily workloads. Data is the foundational layer for all generative AI and ML applications.

SQL 126
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Generate financial industry-specific insights using generative AI and in-context fine-tuning

AWS Machine Learning Blog

NOTE : Since we used an SQL query engine to query the dataset for this demonstration, the prompts and generated outputs mention SQL below. The question in the preceding example doesn’t require a lot of complex analysis on the data returned from the ETF dataset. A user can ask a business- or industry-related question for ETFs.

SQL 112
article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In the ever-evolving world of big data, managing vast amounts of information efficiently has become a critical challenge for businesses across the globe. As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident.

article thumbnail

An integrated experience for all your data and AI with Amazon SageMaker Unified Studio (preview)

Flipboard

Many of these applications are complex to build because they require collaboration across teams and the integration of data, tools, and services. Data engineers use data warehouses, data lakes, and analytics tools to load, transform, clean, and aggregate data.

SQL 160
article thumbnail

Imperva optimizes SQL generation from natural language using Amazon Bedrock

AWS Machine Learning Blog

Our goal was to improve the user experience of an existing application used to explore the counters and insights data. The data is stored in a data lake and retrieved by SQL using Amazon Athena. The following figure shows a search query that was translated to SQL and run.

SQL 113
article thumbnail

Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources

AWS Machine Learning Blog

Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. Today, generative AI can enable people without SQL knowledge. The solution in this post aims to bring enterprise analytics operations to the next level by shortening the path to your data using natural language.

SQL 139