Remove AI Remove Data Preparation Remove ML
article thumbnail

ML stack

Dataconomy

The ML stack is an essential framework for any data scientist or machine learning engineer. With the ability to streamline processes ranging from data preparation to model deployment and monitoring, it enables teams to efficiently convert raw data into actionable insights. What is an ML stack?

ML 91
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

This year, generative AI and machine learning (ML) will again be in focus, with exciting keynote announcements and a variety of sessions showcasing insights from AWS experts, customer stories, and hands-on experiences with AWS services. Fifth, we’ll showcase various generative AI use cases across industries.

AWS 101
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Accelerate data preparation for ML in Amazon SageMaker Canvas

AWS Machine Learning Blog

Data preparation is a crucial step in any machine learning (ML) workflow, yet it often involves tedious and time-consuming tasks. Amazon SageMaker Canvas now supports comprehensive data preparation capabilities powered by Amazon SageMaker Data Wrangler.

article thumbnail

AI Powers E-Commerce, But Scaling Up Presents Complex Hurdles

Dataconomy

However, an expert in the field says that scaling AI solutions to handle the massive volume of data and real-time demands of large platforms presents a complex set of architectural, data management, and ethical challenges. ML and business should discuss these things in advance, such as how to ensure fairness, Krotkikh said.

article thumbnail

Migrate Amazon SageMaker Data Wrangler flows to Amazon SageMaker Canvas for faster data preparation

AWS Machine Learning Blog

Amazon SageMaker Data Wrangler provides a visual interface to streamline and accelerate data preparation for machine learning (ML), which is often the most time-consuming and tedious task in ML projects. About the Authors Charles Laughlin is a Principal AI Specialist at Amazon Web Services (AWS).

article thumbnail

Accelerating AI/ML development at BMW Group with Amazon SageMaker Studio

Flipboard

With that, the need for data scientists and machine learning (ML) engineers has grown significantly. Data scientists and ML engineers require capable tooling and sufficient compute for their work. Data scientists and ML engineers require capable tooling and sufficient compute for their work.

ML 153
article thumbnail

Using responsible AI principles with Amazon Bedrock Batch Inference

AWS Machine Learning Blog

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

AI 111