Remove Algorithm Remove AWS Remove Data Preparation
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. The sessions showcase how Amazon Q can help you streamline coding, testing, and troubleshooting, as well as enable you to make the most of your data to optimize business operations.

AWS 91
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Conventional ML development cycles take weeks to many months and requires sparse data science understanding and ML development skills. Business analysts’ ideas to use ML models often sit in prolonged backlogs because of data engineering and data science team’s bandwidth and data preparation activities.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Cohere Embed multimodal embeddings model is now available on Amazon SageMaker JumpStart

AWS Machine Learning Blog

It offers an unparalleled suite of tools that cater to every stage of the ML lifecycle, from data preparation to model deployment and monitoring. You may be prompted to subscribe to this model through AWS Marketplace. On the AWS Marketplace listing , choose Continue to subscribe. Check out the Cohere on AWS GitHub repo.

AWS 103
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

AWS 92
article thumbnail

How Marubeni is optimizing market decisions using AWS machine learning and analytics

AWS Machine Learning Blog

This solution helps market analysts design and perform data-driven bidding strategies optimized for power asset profitability. In this post, you will learn how Marubeni is optimizing market decisions by using the broad set of AWS analytics and ML services, to build a robust and cost-effective Power Bid Optimization solution.

AWS 88
article thumbnail

How Light & Wonder built a predictive maintenance solution for gaming machines on AWS

AWS Machine Learning Blog

Working with AWS, Light & Wonder recently developed an industry-first secure solution, Light & Wonder Connect (LnW Connect), to stream telemetry and machine health data from roughly half a million electronic gaming machines distributed across its casino customer base globally when LnW Connect reaches its full potential.

AWS 103
article thumbnail

Implement a custom AutoML job using pre-selected algorithms in Amazon SageMaker Automatic Model Tuning

AWS Machine Learning Blog

AutoML allows you to derive rapid, general insights from your data right at the beginning of a machine learning (ML) project lifecycle. Understanding up front which preprocessing techniques and algorithm types provide best results reduces the time to develop, train, and deploy the right model. For Elastic Inference , choose none.

Algorithm 109