Remove Algorithm Remove EDA Remove Exploratory Data Analysis
article thumbnail

Exploratory Data Analysis (EDA) – Credit Card Fraud Detection Case Study

Analytics Vidhya

Overview Lots of financial losses are caused every year due to credit card fraud transactions, the financial industry has switched from a posterior investigation approach to an a priori predictive approach with the design of fraud detection algorithms to warn and help fraud investigators. […].

article thumbnail

The ultimate guide to the Machine Learning Model Deployment

Data Science Dojo

The development of a Machine Learning Model can be divided into three main stages: Building your ML data pipeline: This stage involves gathering data, cleaning it, and preparing it for modeling. For data scrapping a variety of sources, such as online databases, sensor data, or social media.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

11 Open Source Data Exploration Tools You Need to Know in 2023

ODSC - Open Data Science

There are also plenty of data visualization libraries available that can handle exploration like Plotly, matplotlib, D3, Apache ECharts, Bokeh, etc. In this article, we’re going to cover 11 data exploration tools that are specifically designed for exploration and analysis. Output is a fully self-contained HTML application.

article thumbnail

LLMOps demystified: Why it’s crucial and best practices for 2023

Data Science Dojo

Some projects may necessitate a comprehensive LLMOps approach, spanning tasks from data preparation to pipeline production. Exploratory Data Analysis (EDA) Data collection: The first step in LLMOps is to collect the data that will be used to train the LLM.

article thumbnail

How To Learn Python For Data Science?

Pickl AI

Mathematical Foundations In addition to programming concepts, a solid grasp of basic mathematical principles is essential for success in Data Science. Mathematics is critical in Data Analysis and algorithm development, allowing you to derive meaningful insights from data.

article thumbnail

Navigating the Exciting Stages: The Journey of a Machine Learning Project Life Cycle

Towards AI

From Predicting the behavior of a customer to automating many tasks, Machine learning has shown its capacity to convert raw data into actionable insights. Even though converting raw data into actionable insights, it is not determined by ML algorithms alone. This process is called Exploratory Data Analysis(EDA).

article thumbnail

The AI Process

Towards AI

We can apply a data-centric approach by using AutoML or coding a custom test harness to evaluate many algorithms (say 20–30) on the dataset and then choose the top performers (perhaps top 3) for further study, being sure to give preference to simpler algorithms (Occam’s Razor).

AI 98