This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This article was published as a part of the Data Science Blogathon What is the need for Hive? The official description of Hive is- ‘Apache Hive datawarehouse software project built on top of ApacheHadoop for providing data query and analysis.
Datawarehouse vs. data lake, each has their own unique advantages and disadvantages; it’s helpful to understand their similarities and differences. In this article, we’ll focus on a data lake vs. datawarehouse. Read Many of the preferred platforms for analytics fall into one of these two categories.
The success of any data initiative hinges on the robustness and flexibility of its big data pipeline. What is a Data Pipeline? A traditional data pipeline is a structured process that begins with gathering data from various sources and loading it into a datawarehouse or data lake.
The global Big Data and Data Engineering Services market, valued at USD 51,761.6 This article explores the key fundamentals of Data Engineering, highlighting its significance and providing a roadmap for professionals seeking to excel in this vital field. ETL is vital for ensuring data quality and integrity.
This article endeavors to alleviate those confusions. While traditional datawarehouses made use of an Extract-Transform-Load (ETL) process to ingest data, data lakes instead rely on an Extract-Load-Transform (ELT) process. This adds an additional ETL step, making the data even more stale.
Data engineering is a rapidly growing field that designs and develops systems that process and manage large amounts of data. There are various architectural design patterns in data engineering that are used to solve different data-related problems.
In my 7 years of Data Science journey, I’ve been exposed to a number of different databases including but not limited to Oracle Database, MS SQL, MySQL, EDW, and ApacheHadoop. A lot of you who are already in the data science field must be familiar with BigQuery and its advantages.
Two prominent roles that play a crucial part in this data-driven landscape are Data Scientists and Data Engineers. Their primary responsibilities include: Data Storage and Management Data Engineers design and implement storage solutions for different types of data, be it structured, semi-structured, or unstructured.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content