Remove Apache Kafka Remove Azure Remove Database
article thumbnail

Apache Kafka use cases: Driving innovation across diverse industries

IBM Journey to AI blog

Apache Kafka is an open-source , distributed streaming platform that allows developers to build real-time, event-driven applications. With Apache Kafka, developers can build applications that continuously use streaming data records and deliver real-time experiences to users. How does Apache Kafka work?

article thumbnail

Streaming Machine Learning Without a Data Lake

ODSC - Open Data Science

Be sure to check out his talk, “ Apache Kafka for Real-Time Machine Learning Without a Data Lake ,” there! The combination of data streaming and machine learning (ML) enables you to build one scalable, reliable, but also simple infrastructure for all machine learning tasks using the Apache Kafka ecosystem.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is Data Ingestion? Understanding the Basics

Pickl AI

From extracting information from databases and spreadsheets to ingesting streaming data from IoT devices and social media platforms, It’s the foundation upon which data-driven initiatives are built. Apache Kafka An open-source platform designed for real-time data streaming. Data Lakes allow for flexible analysis.

article thumbnail

Discover the Most Important Fundamentals of Data Engineering

Pickl AI

They are responsible for building and maintaining data architectures, which include databases, data warehouses, and data lakes. Data Modelling Data modelling is creating a visual representation of a system or database. Physical Models: These models specify how data will be physically stored in databases.

article thumbnail

A Comprehensive Guide to the main components of Big Data

Pickl AI

This includes structured data (like databases), semi-structured data (like XML files), and unstructured data (like text documents and videos). Cloud Storage: Services like Amazon S3, Google Cloud Storage, and Microsoft Azure Blob Storage provide scalable storage solutions that can accommodate massive datasets with ease.

article thumbnail

A Comprehensive Guide to the Main Components of Big Data

Pickl AI

This includes structured data (like databases), semi-structured data (like XML files), and unstructured data (like text documents and videos). Cloud Storage: Services like Amazon S3, Google Cloud Storage, and Microsoft Azure Blob Storage provide scalable storage solutions that can accommodate massive datasets with ease.

article thumbnail

How to Manage Unstructured Data in AI and Machine Learning Projects

DagsHub

Data can come from different sources, such as databases or directly from users, with additional sources, including platforms like GitHub, Notion, or S3 buckets. Vector Databases Vector databases help store unstructured data by storing the actual data and its vector representation. mp4,webm, etc.), and audio files (.wav,mp3,acc,