This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Summary: The fundamentals of DataEngineering encompass essential practices like datamodelling, warehousing, pipelines, and integration. Understanding these concepts enables professionals to build robust systems that facilitate effective data management and insightful analysis. What is DataEngineering?
Dataengineering is a rapidly growing field that designs and develops systems that process and manage large amounts of data. There are various architectural design patterns in dataengineering that are used to solve different data-related problems.
Introduction: The Customer DataModeling Dilemma You know, that thing we’ve been doing for years, trying to capture the essence of our customers in neat little profile boxes? For years, we’ve been obsessed with creating these grand, top-down customer datamodels. Yeah, that one.
Efficient Incremental Processing with Apache Iceberg and Netflix Maestro Dimensional DataModeling in the Modern Era Building Big Data Workflows: NiFi, Hive, Trino, & Zeppelin An Introduction to Data Contracts From Data Mess to Data Mesh — Data Management in the Age of Big Data and Gen AI Introduction to Containers for Data Science / DataEngineering (..)
General Purpose Tools These tools help manage the unstructured data pipeline to varying degrees, with some encompassing data collection, storage, processing, analysis, and visualization. DagsHub's DataEngine DagsHub's DataEngine is a centralized platform for teams to manage and use their datasets effectively.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content