This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Introduction: The Customer DataModeling Dilemma You know, that thing we’ve been doing for years, trying to capture the essence of our customers in neat little profile boxes? For years, we’ve been obsessed with creating these grand, top-down customer datamodels. Yeah, that one.
Summary: The fundamentals of Data Engineering encompass essential practices like datamodelling, warehousing, pipelines, and integration. Understanding these concepts enables professionals to build robust systems that facilitate effective data management and insightful analysis. What is Data Engineering?
NoSQL DBMS NoSQL systems are designed to handle unstructured and semi-structured data. They provide flexibility in datamodels and can scale horizontally to manage large volumes of data. Using Kafka, Twitter can effectively handle high-throughput data streams, enabling users to receive timely notifications and updates.
ETL Design Pattern The ETL (Extract, Transform, Load) design pattern is a commonly used pattern in data engineering. It is used to extract data from various sources, transform the data to fit a specific datamodel or schema, and then load the transformed data into a target system such as a data warehouse or a database.
NoSQL Databases NoSQL databases do not follow the traditional relational database structure, which makes them ideal for storing unstructured data. They allow flexible datamodels such as document, key-value, and wide-column formats, which are well-suited for large-scale data management.
If you will ask data professionals about what is the most challenging part of their day to day work, you will likely discover their concerns around managing different aspects of data before they get to graduate to the datamodeling stage.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content