Remove Apache Kafka Remove Events Remove ML
article thumbnail

Real-time artificial intelligence and event processing  

IBM Journey to AI blog

By leveraging AI for real-time event processing, businesses can connect the dots between disparate events to detect and respond to new trends, threats and opportunities. AI and event processing: a two-way street An event-driven architecture is essential for accelerating the speed of business.

article thumbnail

Streaming Machine Learning Without a Data Lake

ODSC - Open Data Science

Be sure to check out his talk, “ Apache Kafka for Real-Time Machine Learning Without a Data Lake ,” there! The combination of data streaming and machine learning (ML) enables you to build one scalable, reliable, but also simple infrastructure for all machine learning tasks using the Apache Kafka ecosystem.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Building a Business with a Real-Time Analytics Stack, Streaming ML Without a Data Lake, and…

ODSC - Open Data Science

Building a Business with a Real-Time Analytics Stack, Streaming ML Without a Data Lake, and Google’s PaLM 2 Building a Pizza Delivery Service with a Real-Time Analytics Stack The best businesses react quickly and with informed decisions. Here’s a use case of how you can use a real-time analytics stack to build a pizza delivery service.

article thumbnail

Use streaming ingestion with Amazon SageMaker Feature Store and Amazon MSK to make ML-backed decisions in near-real time

AWS Machine Learning Blog

Businesses are increasingly using machine learning (ML) to make near-real-time decisions, such as placing an ad, assigning a driver, recommending a product, or even dynamically pricing products and services. Apache Flink is a popular framework and engine for processing data streams. 0 … 1248 Nov-02 12:14:31 32.45

ML 90
article thumbnail

ML Pipeline Architecture Design Patterns (With 10 Real-World Examples)

The MLOps Blog

There comes a time when every ML practitioner realizes that training a model in Jupyter Notebook is just one small part of the entire project. At that point, the Data Scientists or ML Engineers become curious and start looking for such implementations. What are ML pipeline architecture design patterns?

ML 52
article thumbnail

Streaming Data Pipelines: What Are They and How to Build One

Precisely

More than ever, advanced analytics, ML, and AI are providing the foundation for innovation, efficiency, and profitability. Streaming data pipelines, by extension, offer an architecture capable of handling large volumes of data, accommodating millions of events in near real time. The concept of streaming data was born of necessity.

article thumbnail

Anomaly detection in streaming time series data with online learning using Amazon Managed Service for Apache Flink

AWS Machine Learning Blog

In this post, we demonstrate how to build a robust real-time anomaly detection solution for streaming time series data using Amazon Managed Service for Apache Flink and other AWS managed services. This solution employs machine learning (ML) for anomaly detection, and doesn’t require users to have prior AI expertise.

AWS 107