Remove Article Remove Data Classification Remove Supervised Learning
article thumbnail

Ever wonder what makes machine learning effective?

Dataconomy

Examples of binary classification include spam vs. not spam emails, fraudulent vs. legitimate financial transactions, and disease vs. not disease medical diagnoses. This type of problem is more challenging because the model needs to learn more complex relationships between the input features and the multiple classes.

article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning Blog

In this post, we explore how you can use Amazon Bedrock to generate high-quality categorical ground truth data, which is crucial for training machine learning (ML) models in a cost-sensitive environment. This ground truth data is necessary to train the supervised learning model for a multiclass classification use case.

AWS 91