Remove Artificial Intelligence Remove Data Lakes Remove Data Quality
article thumbnail

Data Integrity for AI: What’s Old is New Again

Precisely

Artificial Intelligence (AI) is all the rage, and rightly so. Which of course led to the adoption of data quality software as part of a data warehousing environment with the goal of executing rules to profile cleanse, standardize, reconcile, enrich, and monitor the data entering the DW to ensure it was fit for purpose.

article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In the ever-evolving world of big data, managing vast amounts of information efficiently has become a critical challenge for businesses across the globe. As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Bridge Between Data Lakes and Data Warehouses

Dataversity

It has been ten years since Pentaho Chief Technology Officer James Dixon coined the term “data lake.” While data warehouse (DWH) systems have had longer existence and recognition, the data industry has embraced the more […]. The post A Bridge Between Data Lakes and Data Warehouses appeared first on DATAVERSITY.

article thumbnail

Drowning in Data? A Data Lake May Be Your Lifesaver

ODSC - Open Data Science

A 2019 survey by McKinsey on global data transformation revealed that 30 percent of total time spent by enterprise IT teams was spent on non-value-added tasks related to poor data quality and availability. The data lake can then refine, enrich, index, and analyze that data. and various countries in Europe.

article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

Amazon AppFlow was used to facilitate the smooth and secure transfer of data from various sources into ODAP. Additionally, Amazon Simple Storage Service (Amazon S3) served as the central data lake, providing a scalable and cost-effective storage solution for the diverse data types collected from different systems.

AWS 79
article thumbnail

Data Engineering for IoT Applications: Unleashing the Power of the Internet of Things

Data Science Connect

This data is then integrated into centralized databases for further processing and analysis. Data Cleaning and Preprocessing IoT data can be noisy, incomplete, and inconsistent. Data engineers employ data cleaning and preprocessing techniques to ensure data quality, making it ready for analysis and decision-making.

article thumbnail

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

AWS Machine Learning Blog

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. The data lake environment is required to configure an AWS Glue database table, which is used to publish an asset in the Amazon DataZone catalog.