Remove Artificial Intelligence Remove Data Preparation Remove SQL
article thumbnail

Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks

AWS Machine Learning Blog

In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, analyze, visualize, and integrate data from various sources before using it in their ML training and inference.

SQL 116
article thumbnail

Empower your career – Discover the 10 essential skills to excel as a data scientist in 2023

Data Science Dojo

This includes sourcing, gathering, arranging, processing, and modeling data, as well as being able to analyze large volumes of structured or unstructured data. The goal of data preparation is to present data in the best forms for decision-making and problem-solving.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Import a fine-tuned Meta Llama 3 model for SQL query generation on Amazon Bedrock

AWS Machine Learning Blog

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. This process might take a couple of hours.

SQL 123
article thumbnail

How Dataiku and Snowflake Strengthen the Modern Data Stack

phData

Its cloud-native architecture, combined with robust data-sharing capabilities, allows businesses to easily leverage cutting-edge tools from partners like Dataiku, fostering innovation and driving more insightful, data-driven outcomes. One of the standout features of Dataiku is its focus on collaboration.

article thumbnail

State of Machine Learning Survey Results Part Two

ODSC - Open Data Science

Machine learning practitioners are often working with data at the beginning and during the full stack of things, so they see a lot of workflow/pipeline development, data wrangling, and data preparation.

article thumbnail

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

AWS Machine Learning Blog

We discuss the important components of fine-tuning, including use case definition, data preparation, model customization, and performance evaluation. This post dives deep into key aspects such as hyperparameter optimization, data cleaning techniques, and the effectiveness of fine-tuning compared to base models.

article thumbnail

GraphReduce: Using Graphs for Feature Engineering Abstractions

ODSC - Open Data Science

Tapping into these schemas and pulling out machine learning-ready features can be nontrivial as one needs to know where the data entity of interest lives (e.g., customers), what its relations are, and how they’re connected, and then write SQL, python, or other to join and aggregate to a granularity of interest.