Remove Artificial Intelligence Remove Hypothesis Testing Remove Support Vector Machines
article thumbnail

Understanding the Synergy Between Artificial Intelligence & Data Science

Pickl AI

Summary: The blog explores the synergy between Artificial Intelligence (AI) and Data Science, highlighting their complementary roles in Data Analysis and intelligent decision-making. Introduction Artificial Intelligence (AI) and Data Science are revolutionising how we analyse data, make decisions, and solve complex problems.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Statistical Analysis Introducing statistical methods and techniques for analysing data, including hypothesis testing, regression analysis, and descriptive statistics. Machine Learning Algorithms Basic understanding of Machine Learning concepts and algorithm s, including supervised and unsupervised learning techniques.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Best Resources for Kids to learn Data Science with Python

Pickl AI

Explore Machine Learning with Python: Become familiar with prominent Python artificial intelligence libraries such as sci-kit-learn and TensorFlow. Begin by employing algorithms for supervised learning such as linear regression , logistic regression, decision trees, and support vector machines.

article thumbnail

Basic Data Science Terms Every Data Analyst Should Know

Pickl AI

A/B Testing: A statistical method for comparing two versions of a variable to determine which one performs better. Artificial Intelligence (AI): A branch of computer science focused on creating systems that can perform tasks typically requiring human intelligence.

article thumbnail

[Updated] 100+ Top Data Science Interview Questions

Mlearning.ai

Another example can be the algorithm of a support vector machine. Hence, we have various classification algorithms in machine learning like logistic regression, support vector machine, decision trees, Naive Bayes classifier, etc. What are Support Vectors in SVM (Support Vector Machine)?