Remove AWS Remove Big Data Remove ML
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. The data mesh is a modern approach to data management that decentralizes data ownership and treats data as a product.

article thumbnail

AWS Announces Generative AI Innovation Center with $100 million Investment

insideBIGDATA

AWS), an Amazon.com, Inc. company (NASDAQ: AMZN), today announced the AWS Generative AI Innovation Center, a new program to help customers successfully build and deploy generative artificial intelligence (AI) solutions. Amazon Web Services, Inc.

AWS 243
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unstructured data management and governance using AWS AI/ML and analytics services

Flipboard

After decades of digitizing everything in your enterprise, you may have an enormous amount of data, but with dormant value. However, with the help of AI and machine learning (ML), new software tools are now available to unearth the value of unstructured data. The solution integrates data in three tiers.

AWS 167
article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

These techniques utilize various machine learning (ML) based approaches. In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience.

AWS 123
article thumbnail

Real value, real time: Production AI with Amazon SageMaker and Tecton

AWS Machine Learning Blog

Businesses are under pressure to show return on investment (ROI) from AI use cases, whether predictive machine learning (ML) or generative AI. Only 54% of ML prototypes make it to production, and only 5% of generative AI use cases make it to production. Using SageMaker, you can build, train and deploy ML models.

ML 86
article thumbnail

Accelerating AI/ML development at BMW Group with Amazon SageMaker Studio

Flipboard

With that, the need for data scientists and machine learning (ML) engineers has grown significantly. Data scientists and ML engineers require capable tooling and sufficient compute for their work. Data scientists and ML engineers require capable tooling and sufficient compute for their work.

ML 153
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

AWS 88