Remove AWS Remove Blog Remove System Architecture
article thumbnail

Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs

AWS Machine Learning Blog

In this post, we show how to create a multimodal chat assistant on Amazon Web Services (AWS) using Amazon Bedrock models, where users can submit images and questions, and text responses will be sourced from a closed set of proprietary documents. For this post, we recommend activating these models in the us-east-1 or us-west-2 AWS Region.

AWS 125
article thumbnail

Transforming financial analysis with CreditAI on Amazon Bedrock: Octus’s journey with AWS

AWS Machine Learning Blog

We walk through the journey Octus took from managing multiple cloud providers and costly GPU instances to implementing a streamlined, cost-effective solution using AWS services including Amazon Bedrock, AWS Fargate , and Amazon OpenSearch Service. Along the way, it also simplified operations as Octus is an AWS shop more generally.

AWS 69
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Real value, real time: Production AI with Amazon SageMaker and Tecton

AWS Machine Learning Blog

Expand to generative AI use cases with your existing AWS and Tecton architecture After you’ve developed ML features using the Tecton and AWS architecture, you can extend your ML work to generative AI use cases. You can also find Tecton at AWS re:Invent. This process is shown in the following diagram.

ML 100
article thumbnail

Build a dynamic, role-based AI agent using Amazon Bedrock inline agents

AWS Machine Learning Blog

AWS Lambda functions for executing specific actions (such as submitting vacation requests or expense reports). To understand how this dynamic role-based functionality works under the hood, lets examine the following system architecture diagram. Maira Ladeira Tanke is a Senior Generative AI Data Scientist at AWS.

AI 96
article thumbnail

Rad AI reduces real-time inference latency by 50% using Amazon SageMaker

AWS Machine Learning Blog

Let’s transition to exploring solutions and architectural strategies. Approaches to researcher productivity To translate our strategic planning into action, we developed approaches focused on refining our processes and system architectures. He has a passion for continuous innovation and using data to drive business outcomes.

ML 111
article thumbnail

How Vidmob is using generative AI to transform its creative data landscape

AWS Machine Learning Blog

In this post, we illustrate how Vidmob , a creative data company, worked with the AWS Generative AI Innovation Center (GenAIIC) team to uncover meaningful insights at scale within creative data using Amazon Bedrock. The chatbot built by AWS GenAIIC would take in this tag data and retrieve insights.

AWS 123
article thumbnail

Build an Amazon SageMaker Model Registry approval and promotion workflow with human intervention

AWS Machine Learning Blog

In this post, we discuss how the AWS AI/ML team collaborated with the Merck Human Health IT MLOps team to build a solution that uses an automated workflow for ML model approval and promotion with human intervention in the middle. A model developer typically starts to work in an individual ML development environment within Amazon SageMaker.

ML 129