Remove AWS Remove Business Intelligence Remove Data Lakes
article thumbnail

Interview – Business Intelligence und Process Mining ohne Vendor Lock-in!

Data Science Blog

Das Format Business Talk am Kudamm in Berlin führte ein Interview mit Benjamin Aunkofer zum Thema “Business Intelligence und Process Mining nachhaltig umsetzen”. Für Data Science ja sowieso. 3 – Bei der Nutzung von Daten fallen oft die Begriffe „Process Mining“ und „Business Intelligence“.

article thumbnail

Essential data engineering tools for 2023: Empowering for management and analysis

Data Science Dojo

Amazon Redshift: Amazon Redshift is a cloud-based data warehousing service provided by Amazon Web Services (AWS). Amazon Redshift allows data engineers to analyze large datasets quickly using massively parallel processing (MPP) architecture. Looker: Looker is a business intelligence and data visualization platform.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Was ist ein Data Lakehouse?

Data Science Blog

tl;dr Ein Data Lakehouse ist eine moderne Datenarchitektur, die die Vorteile eines Data Lake und eines Data Warehouse kombiniert. Die Definition eines Data Lakehouse Ein Data Lakehouse ist eine moderne Datenspeicher- und -verarbeitungsarchitektur, die die Vorteile von Data Lakes und Data Warehouses vereint.

article thumbnail

Principal Financial Group uses AWS Post Call Analytics solution to extract omnichannel customer insights

AWS Machine Learning Blog

They are processing data across channels, including recorded contact center interactions, emails, chat and other digital channels. Solution requirements Principal provides investment services through Genesys Cloud CX, a cloud-based contact center that provides powerful, native integrations with AWS.

AWS 118
article thumbnail

Hybrid Vs. Multi-Cloud: 5 Key Comparisons in Kafka Architectures

Smart Data Collective

You can safely use an Apache Kafka cluster for seamless data movement from the on-premise hardware solution to the data lake using various cloud services like Amazon’s S3 and others. It will enable you to quickly transform and load the data results into Amazon S3 data lakes or JDBC data stores.

article thumbnail

Tackling AI’s data challenges with IBM databases on AWS

IBM Journey to AI blog

Such infrastructure should not only address these issues but also scale according to the demands of AI workloads, thereby enhancing business outcomes. Native integrations with IBM’s data fabric architecture on AWS establish a trusted data foundation, facilitating the acceleration and scaling of AI across the hybrid cloud.

AWS 93
article thumbnail

How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock

AWS Machine Learning Blog

As one of the largest AWS customers, Twilio engages with data, artificial intelligence (AI), and machine learning (ML) services to run their daily workloads. Data is the foundational layer for all generative AI and ML applications. The following diagram illustrates the solution architecture.

SQL 114