Remove AWS Remove Clustering Remove Computer Science
article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning Blog

The process of setting up and configuring a distributed training environment can be complex, requiring expertise in server management, cluster configuration, networking and distributed computing. To simplify infrastructure setup and accelerate distributed training, AWS introduced Amazon SageMaker HyperPod in late 2023.

AWS 104
article thumbnail

Customize DeepSeek-R1 distilled models using Amazon SageMaker HyperPod recipes – Part 1

AWS Machine Learning Blog

These recipes include a training stack validated by Amazon Web Services (AWS) , which removes the tedious work of experimenting with different model configurations, minimizing the time it takes for iterative evaluation and testing. The launcher will interface with your cluster with Slurm or Kubernetes native constructs.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Map Earth’s vegetation in under 20 minutes with Amazon SageMaker

AWS Machine Learning Blog

Although setting up a processing cluster is an alternative, it introduces its own set of complexities, from data distribution to infrastructure management. We use the purpose-built geospatial container with SageMaker Processing jobs for a simplified, managed experience to create and run a cluster. format("/".join(tile_prefix),

ML 112
article thumbnail

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

AWS Machine Learning Blog

Starting with the AWS Neuron 2.18 release , you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. AWS DLCs provide a set of Docker images that are pre-installed with deep learning frameworks.

AWS 123
article thumbnail

Accelerate pre-training of Mistral’s Mathstral model with highly resilient clusters on Amazon SageMaker HyperPod

AWS Machine Learning Blog

It is important to consider the massive amount of compute often required to train these models. When using compute clusters of massive size, a single failure can often throw a training job off course and may require multiple hours of discovery and remediation from customers.

article thumbnail

Boost your forecast accuracy with time series clustering

AWS Machine Learning Blog

AWS provides various services catered to time series data that are low code/no code, which both machine learning (ML) and non-ML practitioners can use for building ML solutions. In this post, we seek to separate a time series dataset into individual clusters that exhibit a higher degree of similarity between its data points and reduce noise.

article thumbnail

Revolutionizing large language model training with Arcee and AWS Trainium

AWS Machine Learning Blog

Close collaboration with AWS Trainium has also played a major role in making the Arcee platform extremely performant, not only accelerating model training but also reducing overall costs and enforcing compliance and data integrity in the secure AWS environment. Our cluster consisted of 16 nodes, each equipped with a trn1n.32xlarge

AWS 124