Remove AWS Remove Clustering Remove ML
article thumbnail

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

AWS Machine Learning Blog

In 2018, I sat in the audience at AWS re:Invent as Andy Jassy announced AWS DeepRacer —a fully autonomous 1/18th scale race car driven by reinforcement learning. At the time, I knew little about AI or machine learning (ML). seconds, securing the 2018 AWS DeepRacer grand champion title!

AWS 106
article thumbnail

Deploy Meta Llama 3.1-8B on AWS Inferentia using Amazon EKS and vLLM

AWS Machine Learning Blog

AWS Trainium and AWS Inferentia based instances, combined with Amazon Elastic Kubernetes Service (Amazon EKS), provide a performant and low cost framework to run LLMs efficiently in a containerized environment. Solution overview The steps to implement the solution are as follows: Create the EKS cluster.

AWS 100
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning Blog

The process of setting up and configuring a distributed training environment can be complex, requiring expertise in server management, cluster configuration, networking and distributed computing. To simplify infrastructure setup and accelerate distributed training, AWS introduced Amazon SageMaker HyperPod in late 2023.

AWS 103
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Machine learning (ML) helps organizations to increase revenue, drive business growth, and reduce costs by optimizing core business functions such as supply and demand forecasting, customer churn prediction, credit risk scoring, pricing, predicting late shipments, and many others. For this post we’ll use a provisioned Amazon Redshift cluster.

article thumbnail

Map Earth’s vegetation in under 20 minutes with Amazon SageMaker

AWS Machine Learning Blog

Amazon SageMaker supports geospatial machine learning (ML) capabilities, allowing data scientists and ML engineers to build, train, and deploy ML models using geospatial data. We use the purpose-built geospatial container with SageMaker Processing jobs for a simplified, managed experience to create and run a cluster.

ML 110
article thumbnail

Open source observability for AWS Inferentia nodes within Amazon EKS clusters

AWS Machine Learning Blog

Recent developments in machine learning (ML) have led to increasingly large models, some of which require hundreds of billions of parameters. In such distributed environments, observability of both instances and ML chips becomes key to model performance fine-tuning and cost optimization.

AWS 122
article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning Blog

Prerequisites To implement the proposed solution, make sure that you have the following: An AWS account and a working knowledge of FMs, Amazon Bedrock , Amazon SageMaker , Amazon OpenSearch Service , Amazon S3 , and AWS Identity and Access Management (IAM). Amazon Titan Multimodal Embeddings model access in Amazon Bedrock.

AWS 114