Remove AWS Remove Clustering Remove Natural Language Processing
article thumbnail

Deploy Meta Llama 3.1 models cost-effectively in Amazon SageMaker JumpStart with AWS Inferentia and AWS Trainium

AWS Machine Learning Blog

8B and 70B inference support on AWS Trainium and AWS Inferentia instances in Amazon SageMaker JumpStart. multilingual large language models (LLMs) are a collection of pre-trained and instruction tuned generative models. An AWS Identity and Access Management (IAM) role to access SageMaker. Meta Llama 3.1 by up to 50%.

AWS 102
article thumbnail

Syngenta develops a generative AI assistant to support sales representatives using Amazon Bedrock Agents

Flipboard

Syngenta and AWS collaborated to develop Cropwise AI , an innovative solution powered by Amazon Bedrock Agents , to accelerate their sales reps’ ability to place Syngenta seed products with growers across North America. The collaboration between Syngenta and AWS showcases the transformative power of LLMs and AI agents.

AWS 149
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Transforming financial analysis with CreditAI on Amazon Bedrock: Octus’s journey with AWS

AWS Machine Learning Blog

We walk through the journey Octus took from managing multiple cloud providers and costly GPU instances to implementing a streamlined, cost-effective solution using AWS services including Amazon Bedrock, AWS Fargate , and Amazon OpenSearch Service. Along the way, it also simplified operations as Octus is an AWS shop more generally.

AWS 111
article thumbnail

How Aetion is using generative AI and Amazon Bedrock to unlock hidden insights about patient populations

AWS Machine Learning Blog

Smart Subgroups For a user-specified patient population, the Smart Subgroups feature identifies clusters of patients with similar characteristics (for example, similar prevalence profiles of diagnoses, procedures, and therapies). The features are stored in Amazon S3 and encrypted with AWS Key Management Service (AWS KMS) for downstream use.

article thumbnail

How Lumi streamlines loan approvals with Amazon SageMaker AI

AWS Machine Learning Blog

To achieve this, Lumi developed a classification model based on BERT (Bidirectional Encoder Representations from Transformers) , a state-of-the-art natural language processing (NLP) technique. The pipeline leverages several AWS services familiar to Lumis team. Follow him on LinkedIn.

AI 111
article thumbnail

Sprinklr improves performance by 20% and reduces cost by 25% for machine learning inference on AWS Graviton3

AWS Machine Learning Blog

Sprinklr’s specialized AI models streamline data processing, gather valuable insights, and enable workflows and analytics at scale to drive better decision-making and productivity. During this journey, we collaborated with our AWS technical account manager and the Graviton software engineering teams.

article thumbnail

The future of productivity agents with NinjaTech AI and AWS Trainium

AWS Machine Learning Blog

In this post, we describe how we built our cutting-edge productivity agent NinjaLLM, the backbone of MyNinja.ai, using AWS Trainium chips. For training, we chose to use a cluster of trn1.32xlarge instances to take advantage of Trainium chips. We used a cluster of 32 instances in order to efficiently parallelize the training.

AWS 130