Remove AWS Remove Data Engineering Remove ML
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. The data mesh is a modern approach to data management that decentralizes data ownership and treats data as a product.

article thumbnail

Deployment of ML models in Cloud – AWS SageMaker?(in-built algorithms)

Analytics Vidhya

Introduction: Gone are the days when enterprises set up their own in-house server and spending a gigantic amount of budget on storage infrastructure & The post Deployment of ML models in Cloud – AWS SageMaker?(in-built in-built algorithms) appeared first on Analytics Vidhya.

AWS 178
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

At the heart of this transformation is the OMRON Data & Analytics Platform (ODAP), an innovative initiative designed to revolutionize how the company harnesses its data assets. The robust security features provided by Amazon S3, including encryption and durability, were used to provide data protection.

AWS 85
article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning Blog

Principal wanted to use existing internal FAQs, documentation, and unstructured data and build an intelligent chatbot that could provide quick access to the right information for different roles. Principal also used the AWS open source repository Lex Web UI to build a frontend chat interface with Principal branding.

AWS 112
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

The Hadoop environment was hosted on Amazon Elastic Compute Cloud (Amazon EC2) servers, managed in-house by Rockets technology team, while the data science experience infrastructure was hosted on premises. Communication between the two systems was established through Kerberized Apache Livy (HTTPS) connections over AWS PrivateLink.

article thumbnail

Build an AI-powered document processing platform with open source NER model and LLM on Amazon SageMaker

Flipboard

Solution overview The NER & LLM Gen AI Application is a document processing solution built on AWS that combines NER and LLMs to automate document analysis at scale. Click here to open the AWS console and follow along. The endpoint lifecycle is orchestrated through dedicated AWS Lambda functions that handle creation and deletion.

AWS 109
article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Machine learning (ML) helps organizations to increase revenue, drive business growth, and reduce costs by optimizing core business functions such as supply and demand forecasting, customer churn prediction, credit risk scoring, pricing, predicting late shipments, and many others. Let’s learn about the services we will use to make this happen.