Remove AWS Remove Data Governance Remove Data Warehouse
article thumbnail

Was ist ein Data Lakehouse?

Data Science Blog

tl;dr Ein Data Lakehouse ist eine moderne Datenarchitektur, die die Vorteile eines Data Lake und eines Data Warehouse kombiniert. Organisationen können je nach ihren spezifischen Bedürfnissen und Anforderungen zwischen einem Data Warehouse und einem Data Lakehouse wählen.

article thumbnail

Essential data engineering tools for 2023: Empowering for management and analysis

Data Science Dojo

Data engineering tools offer a range of features and functionalities, including data integration, data transformation, data quality management, workflow orchestration, and data visualization. Essential data engineering tools for 2023 Top 10 data engineering tools to watch out for in 2023 1.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Alation 2022.2: Open Data Quality Initiative and Enhanced Data Governance

Alation

generally available on May 24, Alation introduces the Open Data Quality Initiative for the modern data stack, giving customers the freedom to choose the data quality vendor that’s best for them with the added confidence that those tools will integrate seamlessly with Alation’s Data Catalog and Data Governance application.

article thumbnail

How IBM and AWS are partnering to deliver the promise of AI for business

IBM Journey to AI blog

Businesses globally recognize the power of generative AI and are eager to harness data and AI for unmatched growth, sustainable operations, streamlining and pioneering innovation. In this quest, IBM and AWS have forged a strategic alliance, aiming to transition AI’s business potential from mere talk to tangible action.

AWS 95
article thumbnail

Data Warehouse vs. Data Lake

Precisely

Data warehouse vs. data lake, each has their own unique advantages and disadvantages; it’s helpful to understand their similarities and differences. In this article, we’ll focus on a data lake vs. data warehouse. Read Many of the preferred platforms for analytics fall into one of these two categories.

article thumbnail

Tackling AI’s data challenges with IBM databases on AWS

IBM Journey to AI blog

The solution: IBM databases on AWS To solve for these challenges, IBM’s portfolio of SaaS database solutions on Amazon Web Services (AWS), enables enterprises to scale applications, analytics and AI across the hybrid cloud landscape. Let’s delve into the database portfolio from IBM available on AWS. 

AWS 93
article thumbnail

Use Amazon SageMaker Canvas to build machine learning models using Parquet data from Amazon Athena and AWS Lake Formation

AWS Machine Learning Blog

This means that business analysts who want to extract insights from the large volumes of data in their data warehouse must frequently use data stored in Parquet. Canvas provides connectors to AWS data sources such as Amazon Simple Storage Service (Amazon S3), Athena, and Amazon Redshift. Choose Grant.