Remove AWS Remove Data Models Remove ML
article thumbnail

Accelerating ML experimentation with enhanced security: AWS PrivateLink support for Amazon SageMaker with MLflow

AWS Machine Learning Blog

With access to a wide range of generative AI foundation models (FM) and the ability to build and train their own machine learning (ML) models in Amazon SageMaker , users want a seamless and secure way to experiment with and select the models that deliver the most value for their business.

AWS 90
article thumbnail

Unstructured data management and governance using AWS AI/ML and analytics services

Flipboard

Unstructured data is information that doesn’t conform to a predefined schema or isn’t organized according to a preset data model. Text, images, audio, and videos are common examples of unstructured data. Additionally, we show how to use AWS AI/ML services for analyzing unstructured data.

AWS 166
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

The Hadoop environment was hosted on Amazon Elastic Compute Cloud (Amazon EC2) servers, managed in-house by Rockets technology team, while the data science experience infrastructure was hosted on premises. Communication between the two systems was established through Kerberized Apache Livy (HTTPS) connections over AWS PrivateLink.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries.

ML 125
article thumbnail

Develop and train large models cost-efficiently with Metaflow and AWS Trainium

AWS Machine Learning Blog

In 2024, however, organizations are using large language models (LLMs), which require relatively little focus on NLP, shifting research and development from modeling to the infrastructure needed to support LLM workflows. Metaflow’s coherent APIs simplify the process of building real-world ML/AI systems in teams.

AWS 122
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

This post was written in collaboration with Bhajandeep Singh and Ajay Vishwakarma from Wipro’s AWS AI/ML Practice. Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models.

AWS 132
article thumbnail

Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate

AWS Machine Learning Blog

The ZMP analyzes billions of structured and unstructured data points to predict consumer intent by using sophisticated artificial intelligence (AI) to personalize experiences at scale. Hosted on Amazon ECS with tasks run on Fargate, this platform streamlines the end-to-end ML workflow, from data ingestion to model deployment.

AWS 116