Remove AWS Remove Database Remove Document
article thumbnail

Implement RAG while meeting data residency requirements using AWS hybrid and edge services

Flipboard

In this post, we show how to extend Amazon Bedrock Agents to hybrid and edge services such as AWS Outposts and AWS Local Zones to build distributed Retrieval Augmented Generation (RAG) applications with on-premises data for improved model outcomes.

AWS 152
article thumbnail

How AWS sales uses Amazon Q Business for customer engagement

AWS Machine Learning Blog

Earlier this year, we published the first in a series of posts about how AWS is transforming our seller and customer journeys using generative AI. Field Advisor serves four primary use cases: AWS-specific knowledge search With Amazon Q Business, weve made internal data sources as well as public AWS content available in Field Advisors index.

AWS 104
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Evaluate large language models for your machine translation tasks on AWS

AWS Machine Learning Blog

Translation memory A translation memory is a database that stores previously translated text segments (typically sentences or phrases) along with their corresponding translations. The solution offers two TM retrieval modes for users to choose from: vector and document search. This is covered in detail later in the post.

AWS 110
article thumbnail

How AWS Sales uses generative AI to streamline account planning

AWS Machine Learning Blog

Every year, AWS Sales personnel draft in-depth, forward looking strategy documents for established AWS customers. These documents help the AWS Sales team to align with our customer growth strategy and to collaborate with the entire sales team on long-term growth ideas for AWS customers.

AWS 103
article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning Blog

It works by analyzing the visual content to find similar images in its database. Store embeddings : Ingest the generated embeddings into an OpenSearch Serverless vector index, which serves as the vector database for the solution. The AWS Command Line Interface (AWS CLI) installed on your machine to upload the dataset to Amazon S3.

AWS 115
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. or a later version) database.

ETL 138
article thumbnail

Protect sensitive data in RAG applications with Amazon Bedrock

Flipboard

To assist in this effort, AWS provides a range of generative AI security strategies that you can use to create appropriate threat models. Document chunks are then encoded with an embedding model to convert them to document embeddings. For all data stored in Amazon Bedrock, the AWS shared responsibility model applies.

AWS 151