Remove AWS Remove DataOps Remove ML
article thumbnail

How HR Tech Company Sense Scaled their ML Operations using Iguazio

Iguazio

This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers. The Challenge Like many organizations, the AI/ML team at Sense was finding it challenging to scale its ML operations.

ML 52
article thumbnail

How Sense Uses Iguazio as a Key Component of Their ML Stack

Iguazio

This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers. The Challenge: Scaling ML Operations Like many organizations, the AI/ML team at Sense was finding it challenging to scale its ML operations.

ML 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AIOps vs. MLOps: Harnessing big data for “smarter” ITOPs

IBM Journey to AI blog

AIOPs refers to the application of artificial intelligence (AI) and machine learning (ML) techniques to enhance and automate various aspects of IT operations (ITOps). ML technologies help computers achieve artificial intelligence. However, they differ fundamentally in their purpose and level of specialization in AI and ML environments.

Big Data 106
article thumbnail

Authoring custom transformations in Amazon SageMaker Data Wrangler using NLTK and SciPy

AWS Machine Learning Blog

You can integrate a Data Wrangler data preparation flow into your machine learning (ML) workflows to simplify data preprocessing and feature engineering, taking data preparation to production faster without the need to author PySpark code, install Apache Spark, or spin up clusters.

AWS 95
article thumbnail

Is your model good? A deep dive into Amazon SageMaker Canvas advanced metrics

AWS Machine Learning Blog

Although machine learning (ML) can provide valuable insights, ML experts were needed to build customer churn prediction models until the introduction of Amazon SageMaker Canvas. Prerequisites If you would like to implement all or some of the tasks described in this post, you need an AWS account with access to SageMaker Canvas.

ML 91
article thumbnail

Data Integrity Trends for 2024

Precisely

Trusting your data is the cornerstone of successful AI and ML (machine learning) initiatives, and data integrity is the key that unlocks the fullest potential. Without data integrity, you risk compromising your AI and ML initiatives due to unreliable inferences and biases that don’t fuel business value.