Remove AWS Remove Deep Learning Remove Python
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. Third, we’ll explore the robust infrastructure services from AWS powering AI innovation, featuring Amazon SageMaker , AWS Trainium , and AWS Inferentia under AI/ML, as well as Compute topics.

AWS 107
article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning Blog

To simplify infrastructure setup and accelerate distributed training, AWS introduced Amazon SageMaker HyperPod in late 2023. In this blog post, we showcase how you can perform efficient supervised fine tuning for a Meta Llama 3 model using PEFT on AWS Trainium with SageMaker HyperPod. architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/

AWS 106
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Deploy Meta Llama 3.1 models cost-effectively in Amazon SageMaker JumpStart with AWS Inferentia and AWS Trainium

AWS Machine Learning Blog

8B and 70B inference support on AWS Trainium and AWS Inferentia instances in Amazon SageMaker JumpStart. Trainium and Inferentia, enabled by the AWS Neuron software development kit (SDK), offer high performance and lower the cost of deploying Meta Llama 3.1 An AWS Identity and Access Management (IAM) role to access SageMaker.

AWS 101
article thumbnail

Serving LLMs using vLLM and Amazon EC2 instances with AWS AI chips

AWS Machine Learning Blog

Using vLLM on AWS Trainium and Inferentia makes it possible to host LLMs for high performance inference and scalability. Deploy vLLM on AWS Trainium and Inferentia EC2 instances In these sections, you will be guided through using vLLM on an AWS Inferentia EC2 instance to deploy Meta’s newest Llama 3.2 You will use inf2.xlarge

AWS 106
article thumbnail

Fine-tune and host SDXL models cost-effectively with AWS Inferentia2

AWS Machine Learning Blog

We show how to then prepare the fine-tuned model to run on AWS Inferentia2 powered Amazon EC2 Inf2 instances , unlocking superior price performance for your inference workloads. After the model is fine-tuned, you can compile and host the fine-tuned SDXL on Inf2 instances using the AWS Neuron SDK. An Amazon Web Services (AWS) account.

AWS 92
article thumbnail

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 1: ModelTrainer

AWS Machine Learning Blog

Amazon SageMaker has redesigned its Python SDK to provide a unified object-oriented interface that makes it straightforward to interact with SageMaker services. The higher-level abstracted layer is designed for data scientists with limited AWS expertise, offering a simplified interface that hides complex infrastructure details.

ML 101
article thumbnail

Reduce conversational AI response time through inference at the edge with AWS Local Zones

AWS Machine Learning Blog

Hybrid architecture with AWS Local Zones To minimize the impact of network latency on TTFT for users regardless of their locations, a hybrid architecture can be implemented by extending AWS services from commercial Regions to edge locations closer to end users. Next, create a subnet inside each Local Zone. Amazon Linux 2).

AWS 83