Remove AWS Remove Demo Remove ML
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. Third, we’ll explore the robust infrastructure services from AWS powering AI innovation, featuring Amazon SageMaker , AWS Trainium , and AWS Inferentia under AI/ML, as well as Compute topics.

AWS 85
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2023

AWS Machine Learning Blog

Yes, the AWS re:Invent season is upon us and as always, the place to be is Las Vegas! Now all you need is some guidance on generative AI and machine learning (ML) sessions to attend at this twelfth edition of re:Invent. are the sessions dedicated to AWS DeepRacer ! Generative AI is at the heart of the AWS Village this year.

AWS 127
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Machine learning (ML) helps organizations to increase revenue, drive business growth, and reduce costs by optimizing core business functions such as supply and demand forecasting, customer churn prediction, credit risk scoring, pricing, predicting late shipments, and many others. Let’s learn about the services we will use to make this happen.

article thumbnail

Real value, real time: Production AI with Amazon SageMaker and Tecton

AWS Machine Learning Blog

Businesses are under pressure to show return on investment (ROI) from AI use cases, whether predictive machine learning (ML) or generative AI. Only 54% of ML prototypes make it to production, and only 5% of generative AI use cases make it to production. Using SageMaker, you can build, train and deploy ML models.

ML 85
article thumbnail

Deploy DeepSeek-R1 Distilled Llama models in Amazon Bedrock

AWS Machine Learning Blog

In this post, we explore how to deploy distilled versions of DeepSeek-R1 with Amazon Bedrock Custom Model Import, making them accessible to organizations looking to use state-of-the-art AI capabilities within the secure and scalable AWS infrastructure at an effective cost. Watch this video demo for a step-by-step guide.

AWS 121
article thumbnail

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 1: PySDK Improvements

Flipboard

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and effortlessly build, train, and deploy machine learning (ML) models at any scale. For example: input = "How is the demo going?" Models are packaged into containers for robust and scalable deployments.

ML 167
article thumbnail

Build a dynamic, role-based AI agent using Amazon Bedrock inline agents

AWS Machine Learning Blog

For this demo, weve implemented metadata filtering to retrieve only the appropriate level of documents based on the users access level, further enhancing efficiency and security. AWS Lambda functions for executing specific actions (such as submitting vacation requests or expense reports).

AWS 86