Remove AWS Remove Document Remove Natural Language Processing
article thumbnail

Implement RAG while meeting data residency requirements using AWS hybrid and edge services

Flipboard

In this post, we show how to extend Amazon Bedrock Agents to hybrid and edge services such as AWS Outposts and AWS Local Zones to build distributed Retrieval Augmented Generation (RAG) applications with on-premises data for improved model outcomes.

AWS 152
article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning Blog

Principal wanted to use existing internal FAQs, documentation, and unstructured data and build an intelligent chatbot that could provide quick access to the right information for different roles. Principal also used the AWS open source repository Lex Web UI to build a frontend chat interface with Principal branding.

AWS 114
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Syngenta develops a generative AI assistant to support sales representatives using Amazon Bedrock Agents

Flipboard

Syngenta and AWS collaborated to develop Cropwise AI , an innovative solution powered by Amazon Bedrock Agents , to accelerate their sales reps’ ability to place Syngenta seed products with growers across North America. The collaboration between Syngenta and AWS showcases the transformative power of LLMs and AI agents.

AWS 149
article thumbnail

Amazon Q Business simplifies integration of enterprise knowledge bases at scale

Flipboard

Large-scale data ingestion is crucial for applications such as document analysis, summarization, research, and knowledge management. These tasks often involve processing vast amounts of documents, which can be time-consuming and labor-intensive. Then we introduce the solution deployment using three AWS CloudFormation templates.

AWS 154
article thumbnail

Transforming financial analysis with CreditAI on Amazon Bedrock: Octus’s journey with AWS

AWS Machine Learning Blog

Investment professionals face the mounting challenge of processing vast amounts of data to make timely, informed decisions. The traditional approach of manually sifting through countless research documents, industry reports, and financial statements is not only time-consuming but can also lead to missed opportunities and incomplete analysis.

AWS 91
article thumbnail

Streamline RAG applications with intelligent metadata filtering using Amazon Bedrock

Flipboard

By narrowing down the search space to the most relevant documents or chunks, metadata filtering reduces noise and irrelevant information, enabling the LLM to focus on the most relevant content. This approach narrows down the search space to the most relevant documents or passages, reducing noise and irrelevant information.

AWS 160
article thumbnail

Process formulas and charts with Anthropic’s Claude on Amazon Bedrock

AWS Machine Learning Blog

Research papers and engineering documents often contain a wealth of information in the form of mathematical formulas, charts, and graphs. Navigating these unstructured documents to find relevant information can be a tedious and time-consuming task, especially when dealing with large volumes of data.

AWS 111