Remove AWS Remove Download Remove ML
article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

These techniques utilize various machine learning (ML) based approaches. In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience.

AWS 123
article thumbnail

Deploy a serverless ML inference endpoint of large language models using FastAPI, AWS Lambda, and AWS CDK

AWS Machine Learning Blog

For data scientists, moving machine learning (ML) models from proof of concept to production often presents a significant challenge. Additionally, you can use AWS Lambda directly to expose your models and deploy your ML applications using your preferred open-source framework, which can prove to be more flexible and cost-effective.

AWS 97
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch

AWS Machine Learning Blog

This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker.

ML 94
article thumbnail

AWS Inferentia and AWS Trainium deliver lowest cost to deploy Llama 3 models in Amazon SageMaker JumpStart

AWS Machine Learning Blog

Today, we’re excited to announce the availability of Meta Llama 3 inference on AWS Trainium and AWS Inferentia based instances in Amazon SageMaker JumpStart. In this post, we demonstrate how easy it is to deploy Llama 3 on AWS Trainium and AWS Inferentia based instances in SageMaker JumpStart.

AWS 127
article thumbnail

Enrich your AWS Glue Data Catalog with generative AI metadata using Amazon Bedrock

Flipboard

By harnessing the capabilities of generative AI, you can automate the generation of comprehensive metadata descriptions for your data assets based on their documentation, enhancing discoverability, understanding, and the overall data governance within your AWS Cloud environment. You need the following prerequisite resources: An AWS account.

AWS 143
article thumbnail

Reinventing a cloud-native federated learning architecture on AWS

AWS Machine Learning Blog

Machine learning (ML), especially deep learning, requires a large amount of data for improving model performance. Customers often need to train a model with data from different regions, organizations, or AWS accounts. Federated learning (FL) is a distributed ML approach that trains ML models on distributed datasets.

AWS 114
article thumbnail

Super charge your LLMs with RAG at scale using AWS Glue for Apache Spark

AWS Machine Learning Blog

In this post, we will explore building a reusable RAG data pipeline on LangChain —an open source framework for building applications based on LLMs—and integrating it with AWS Glue and Amazon OpenSearch Serverless. You can choose a wide variety of data sources including databases, data warehouses, and SaaS applications supported in AWS Glue.

AWS 113