article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning Blog

Prerequisites To implement the proposed solution, make sure that you have the following: An AWS account and a working knowledge of FMs, Amazon Bedrock , Amazon SageMaker , Amazon OpenSearch Service , Amazon S3 , and AWS Identity and Access Management (IAM). Amazon Titan Multimodal Embeddings model access in Amazon Bedrock.

AWS 115
article thumbnail

Use language embeddings for zero-shot classification and semantic search with Amazon Bedrock

AWS Machine Learning Blog

Amazon Bedrock offers a serverless experience, so you can get started quickly, privately customize FMs with your own data, and integrate and deploy them into your applications using Amazon Web Services (AWS) services without having to manage infrastructure. AWS Lambda The API is a Fastify application written in TypeScript.

AWS 104
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AWS empowers sales teams using generative AI solution built on Amazon Bedrock

AWS Machine Learning Blog

At AWS, we are transforming our seller and customer journeys by using generative artificial intelligence (AI) across the sales lifecycle. It will be able to answer questions, generate content, and facilitate bidirectional interactions, all while continuously using internal AWS and external data to deliver timely, personalized insights.

AWS 126
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning Blog

OpenAI launched GPT-4o in May 2024, and Amazon introduced Amazon Nova models at AWS re:Invent in December 2024. Retrieval (and reranking) strategy FloTorch used a retrieval strategy with a k-nearest neighbor (k-NN) of five for retrieved chunks. Each provisioned node was r7g.4xlarge,

article thumbnail

Retrieval-Augmented Generation with LangChain, Amazon SageMaker JumpStart, and MongoDB Atlas semantic search

Flipboard

MongoDB Atlas Vector Search uses a technique called k-nearest neighbors (k-NN) to search for similar vectors. k-NN works by finding the k most similar vectors to a given vector. Specify the AWS Lambda function that will interact with MongoDB Atlas and the LLM to provide responses.

article thumbnail

Build a secure enterprise application with Generative AI and RAG using Amazon SageMaker JumpStart

AWS Machine Learning Blog

With generative AI on AWS, you can reinvent your applications, create entirely new customer experiences, and improve overall productivity. You can use this post as a reference to build secure enterprise applications in the Generative AI domain using AWS services. An Amazon Simple Storage Service (Amazon S3) bucket.

AWS 124
article thumbnail

Semantic image search for articles using Amazon Rekognition, Amazon SageMaker foundation models, and Amazon OpenSearch Service

AWS Machine Learning Blog

It also relies on the images in the repository being tagged correctly, which can also be automated (for a customer success story, refer to Aller Media Finds Success with KeyCore and AWS ). Using the k-nearest neighbors (k-NN) algorithm, you define how many images to return in your results.