Remove Azure Remove Business Intelligence Remove Data Warehouse
article thumbnail

Top 20 Data Warehouse Interview Questions You Must Know in 2025

Pickl AI

Summary : This guide provides an in-depth look at the top data warehouse interview questions and answers essential for candidates in 2025. Covering key concepts, techniques, and best practices, it equips you with the knowledge needed to excel in interviews and demonstrates your expertise in data warehousing.

article thumbnail

Dedicated SQL pools in Azure Synapse analytics: How to optimize performance and cut costs   

Data Science Dojo

Azure Synapse provides a unified platform to ingest, explore, prepare, transform, manage, and serve data for BI (Business Intelligence) and machine learning needs. DWUs (Data Warehouse Units) can customize resources and optimize performance and costs.

Azure 195
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

With this full-fledged solution, you don’t have to spend all your time and effort combining different services or duplicating data. OneLake, being built on Azure Data Lake Storage (ADLS), supports various data formats, including Delta, Parquet, CSV, and JSON.

Power BI 306
article thumbnail

Top 5 Data Warehouses to Supercharge Your Big Data Strategy

Women in Big Data

A data warehouse is a centralized repository designed to store and manage vast amounts of structured and semi-structured data from multiple sources, facilitating efficient reporting and analysis. Begin by determining your data volume, variety, and the performance expectations for querying and reporting.

article thumbnail

5 misconceptions about cloud data warehouses

IBM Journey to AI blog

In today’s world, data warehouses are a critical component of any organization’s technology ecosystem. They provide the backbone for a range of use cases such as business intelligence (BI) reporting, dashboarding, and machine-learning (ML)-based predictive analytics, that enable faster decision making and insights.

article thumbnail

On-Prem vs. The Cloud: Key Considerations 

phData

In this post, we will be particularly interested in the impact that cloud computing left on the modern data warehouse. We will explore the different options for data warehousing and how you can leverage this information to make the right decisions for your organization. Understanding the Basics What is a Data Warehouse?

article thumbnail

Understanding ETL Tools as a Data-Centric Organization

Smart Data Collective

The ETL process is defined as the movement of data from its source to destination storage (typically a Data Warehouse) for future use in reports and analyzes. The data is initially extracted from a vast array of sources before transforming and converting it to a specific format based on business requirements.

ETL 126