This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Top 50+ Interview Questions for Data Analysts Technical Questions SQL Queries What is SQL, and why is it necessary for dataanalysis? SQL stands for Structured Query Language, essential for querying and manipulating data stored in relational databases. In my previous role, we had a project with a tight deadline.
Model Evaluation and Tuning After building a Machine Learning model, it is crucial to evaluate its performance to ensure it generalises well to new, unseen data. Big data tools and Cloud computing platforms have become essential in providing the scalability and processing power required for effective ML workflows.
Scikit-learn: A simple and efficient tool for data mining and dataanalysis, particularly for building and evaluating machine learning models. Data Normalization and Standardization: Scaling numerical data to a standard range to ensure fairness in model training.
Scikit-learn Scikit-learn is a machine learning library in Python that is majorly used for data mining and dataanalysis. It also provides tools for model evaluation , including cross-validation, hyperparameter tuning, and metrics such as accuracy, precision, recall, and F1-score.
Cross-Validation: Instead of using a single train-test split, cross-validation involves dividing the data into multiple folds and training the model on each fold. This technique helps ensure that the model generalises well across different subsets of the data.
You should be comfortable with cross-validation, hyperparameter tuning, and model evaluation metrics (e.g., For instance, tech companies, financial institutions, and e-commerce platforms often offer higher salaries due to their reliance on complex algorithms and DataAnalysis. accuracy, precision, recall, F1-score).
It is therefore important to carefully plan and execute data preparation tasks to ensure the best possible performance of the machine learning model. It is also essential to evaluate the quality of the dataset by conducting exploratory dataanalysis (EDA), which involves analyzing the dataset’s distribution, frequency, and diversity of text.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content